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Abstract:  This paper discusses various algorithms to the
fusion of multi-spectral image. These fusion techniques
have a wide variety of applications that range from hospital
pathology to battlefield management. Different algorithms
in each fusion level, namely data, feature, and decision are
compared. The PCT-Based algorithm, which has the
characteristic of data compression, is described. The
algorithm is experimented on a foliated aerial scene and the
fusion result is presented.

1. Image Fusion Theory and Applications

Image Fusion is the process of combining information from
a variety of sensors to produce a unified result. The fusion
process ideally generates a single color-composite image
that represents all the useful information from a set of
images of different sensors/wavelengths (multi-spectral
image), thus removing the problems inherent in frame-by-
frame evaluation. The main goal is to improve data
interpretation and recognition by taking advantage of the
complementary characteristics of different sensors. The
concept of image fusion is shown in Figure 1. [11, 12].
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Figure 1. Concept of Multi-sensor Fusion

Objects of different materials normally have unique spectral
signatures. In other words, different objects will absorb and
reflect differently to light. Using this assumption, we can
define a spectral signature for each type of objects in the
scene by experimenting with light from different
wavelengths. Fusion of a multi-spectral image, thus, can be
used to enhance objects of interest in any particular scene.
The resulting image can then be used for feature extraction,
statistical calculation, and object identifying. This
technology has a wide variety of applications that include
land-mine detection, monitoring of agricultural resources

and the weather, military camouflage detection,
computational staining in pathology, and surveillance.

2. Fusion Methods for Multi-spectral Images

A multi-spectral image may be fused using various
techniques: data level fusion, feature level fusion, and
decision level fusion [11].

Data Level Fusion. Fusion at this level, a raw image
acquired from multiple sensors is fused together on a pixel-
by-pixel basis. The algorithms concern fusion in either
spatial or frequency domain. In spatial domain, techniques
usually involved image arithmetic (addition, subtraction,
multiplication, and division) on the pixel intensity from two
or more bands. Band differences or band ratios [25] are the
most useful of these approaches and are often used to
enhance spectral reflectance differences for rocks, soils, and
vegetation. Unfortunately, it is unclear how to define
effective fusion arithmetic for a large number of bands.
Empirical selection of arithmetic rules may introduce losses
in pixel contrast, and important spectral information is thus
lost. An alternative fusion technique that uses maximum
contrast selection [22] may involve a contrast measurement
calculation for each pixel at each scale and orientation in all
spectral bands.

Fusion in frequency domain, an original image is
transformed to frequency or spatial-frequency domain,
where contrast and object characteristics are readily
available. The method of choice is application-dependent;
however, the algorithms typically follow the general
schema described in Figure 2.

Source images are usually transformed using Fourier [10,
20], Laplacian [4, 5], or Wavelet transforms {19, 23]. The
representations in the transform domain are then combined
using algebraic rules to form a single fused data set. This
result is then inversely transformed to obtain a final visible
image. The Fourier transform, although efficient, does not
correlate high frequency components with the original
spatial information and hence cannot locate the position of
an interesting attribute within an image. This problem has
been resolved using pyramid-based methods such as the
Laplacian and Wavelet transformations. The Wavelet
transform has several advantages over the Laplacian: it
provides a more compact representation, separates spatial
orientation in different bands, and decorrelates interesting
attributes in the original image.

The algebraic rules typically weight images in the source
because of the relative importance of specific spectra [22].
For example, in concealed weapons detection, images in the
millimeter wave spectrum extenuate metallic objects and
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are weighted higher in order to show them on the
background of visible images representing people [29]. The
algebraic rules may be based on pixel intensity [21] or on
some measure of contrast [28]. This latter concept allows
the selection of the spectral band that should dominate in
the fiused image. One interesting method is the maximum
selection rule introduced by Burt [4, 5] for combining the
coefficients of Wavelet and Laplacian transforms.
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Figure 2. Overview of the Fusion Process

Feature Level Fusion. At the feature level, raw data will
be transformed in the output into a representation such as
image segments or signal amplitude or as shape, length, or
orientation of objects in an image. The typical algorithms
used in this level are parametric templates [8], hierarchical
clusters [7], neural networks [14, 15, 16}, and knowledge-
based approaches [3]. Parametric templates are often used
because of their simplicity. The effectiveness of these
methods depends upon the distribution in a feature space: if
the distribution is low, the overlap will introduce ambiguity
that may not be resolvable. To enhance the result with little
added complexity, the hierarchical cluster method can be
used. In this method, a cluster is an abstract description of
a set of objects in the image that may be divided into sub-
clusters by virtue of application-dependent parameters that
discriminate objects.
An alternative method is to use Artificial Neural Networks
ANN), which performs a nonlinear transformation between
m input vector and an output feature. This method can
rroduce the required output more efficiently than most
sther approaches [12]. In some medical applications,
nultiple computed tomography images taken from many
lifferent planar views, angles, distances, and spectrums are
1sed as inputs to this algorithm. The output is a computed
omography image that has a clearer view and enhanced
uality. Unfortunately, a considerable level of training is
squired to achieve the transformation function. A training
et is made up of (X;, Y;) data pairs where Y; is a set of
utput associated with the input vector X; The association
inctions between the input and output vectors are
enerated during the training session. After training is
erformed, the ANN can construct a novel CT image for
ly given inputs within seconds. To start the training
‘ocedure, the input images are fed through the network,
here random interconnection weights are generated. The

interconnection weights are adjusted throughout several
iterations. The association functions are determined when
the root-mean-square error is less than a certain limit.
These association functions will later be used to construct
output images from any given set of inputs. The root-
mean-square error, C, is calculated as follows:
C={[I/N*)] * [EXD, ;- Y, )’ }'*
where ] is the number of nodes, N is the number of patterns
in the training set, D, ;is the expected jth output node value
for the nth training set pattern, and Y, ; is the actual output
value. The interconnection weight values are adjusted as
follows:
Wi jnew = Wi joid + 101 Xi + QW jo1d~ Wi, j previous)
where w; ; iqis the present weight value, and w; § previous 1S
the weight value before being adjusted to w; ; o14; ©; is the
error difference in the ith node multiplied by the derivative
sigmoid activation function:
0 =f)(di~y)
The magnitude factor of each adjustment is m, while a
provides an impetus to the weight adjustment [14, 15, 16].
Several thousand training iterations may be required, and
thus a substantive computation is required in the training
process.
Knowledge-based approaches are alternatives that emulate
the cognitive processes used by humans. These approaches
emphasize the use of a set of production rules, frame
representations, and computational logic. Unfortunately,
considerable training is also required for these techniques
[12].

Decision Level Fusion. At the decision level, sensor data
is processed individually and an identity declaration is
performed by applying voting techniques [13], scoring
models [12], or other ad hoc methods [12]. Voting
techniques provide discrimination by a simple majority
determination, where the most likely object is detected;
scoring models form a weighted sum and determine the
maximum weighted score.

The preference for one of these alternative approaches is
highly application-dependent. ~ According to a survey
produced by Hall and Llinas [12], in the sample space of 30
fusion systems there are over 75 algorithms used; no single
algorithm can satisfy all of the needs [2]. However, most
the image fusion schemes described have a common
problem: they are most effective when used on a small
number of images taken from different sensors: for
example, cameras with pre-selected IR, UV, or Visible
filters. It is less clear how to adapt the algorithms to
support a large number of input images.

In the following sections, the paper presents an example
application for multi-spectral image fusion. The data used
is a 210 spectral-band aerial scene in remote sensing. Due
to a large number of bands used, we chose to explore fusion
algorithm based on Principal Component Transform (PCT)
[1], which has the characteristic of compressing data. PCT
has been employed in a variety of remote sensing
applications including hyper-spectral data compression,
information extraction and fusion, [18] and change
detection [6, 9, 24].
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3. PCT-Based Fusion Scheme

The essence of the PCT idea is to summarize and de-
correlate the images by removing redundancy and packing
the residual information into a small set of images, termed
principal components. The components are rank ordered by
the magnitude of their variances (eigenvalues); therefore,
most of the spectral contrast is pushed forward to the first
few components, with an increase in the signal-to-noise
ratio of these components.

In our investigations, the important spectral information
may contain a large number of images, typically between
forty and two hundred. Although the data set possesses
different information in each band, there is high inter-band
correlation due to the common features in a scene. Since
data processing involves a significant degree of
redundancy, we prefer the alternative fusion scheme
(Figure 3) of the Spectral-screening Principal Component
Transform (s-PCT) [1]. The conventional PCT algorithm is
an approach that may utilize either a correlation matrix or a
covariance matrix to de-correlate the source images and
thus remove this redundancy {26, 27]. The correlation
matrix tends to prevent features with large numerical values
from dominating the resulting bands, and although this
produces unbiased eigenvalues, it often distributes variation
over a larger number of the resulting components than the
covariance matrix. Qur goal is to pack as much information
as possible into the first few principal components, thus we
choose to work with the covariance matrix. Our method
performs spectral angle classification [17] on the original
image sets. The unique spectral set is then used to form the
associated covariance matrix, which characterizes
variations in image contrast. The covariance matrix is then
used to form, through a linear transformation, a collection
of principal components that effectively summarize the
most significant variations across all spectra.
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Figure 3. PCT-Based Fusion Algorithm

4. Fusion Results
In our experiment we used an aerial scene containing a
significant mix of forestry, fields, roads, and a mechanized
vehicle. Figure 4 shows a representative sample of frames
picked from the 210 spectral bands. The algorithm in

section 3 is used to summarize the information from alil
spectral bands into a single, color-composite image;
presenting as much information as possible to human
observer.

900nm 1900nm

Figure 4: Sample Frames from Original Multi-spectral
Image

Figure 5, when viewed on a high-quality monitor, shows
improved contrast levels. The forested areas show
improved detail and the mechanized vehicle in the lower
left corner is significantly enhanced against its background.
Post-processing steps can subsequently be applied to detect
edges in the image and use structural information to detect
and classify the vehicles.

Figure 5: Resulting Image

5. Conclusion
This paper has discussed and compared various techniques
used for multi-spectral image fusion. Different algorithms
are described with the emphasis on the PCT algorithm.
PCT-Based algorithms are proved to be effective for data
with a large number of spectral bands, such as remote
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sensing data. An Experiment with an aerial picture of a
foliated scene is also presented and the result displays the
improvement in image quality.
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