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Neural Network—-based Signal Processing Technique
for Structural Damage Detection
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1. Introduction

Structural health monitoring requires the processes of system identification and damage assessment
to be effective for the purpose of engineering management and maintenance. The vibration-based
monitoring has been the major tool to assess the health state of structures and furthermore for their
matintenance over the past two decades. However, there still remain many important issues to be
solved for the development of the vibration-based structural health monitoring system for practical
purpose. They might include: 1) the establishment of damage indices that represent comprehensive
state of a structure local as well as global structural safety and reliability; 2) the development of an

+ AgUSE AN THATAY AFAT Y
w A5 Agagustn T2 AARA

o

o

o FYE AU L A TEF ALY FEN BR21 ASZETF
o AB A AU A TFHFAAEFTEE ap

-267 -



appropriate base line model that frequently inherits errors resulted from measurement and
modeling; 3) an economic arrangement of measuring system considering only representative
location; and 4) the development of practical identification methodologies during different stages
from the undamaged to the damaged.

The main focus of this study is to develop damage identification methodology by utilizing the
concept of artificial neural networks (ANN) reflecting the above issues appropriately but implicitly.
Especially, hierarchical identification approach is adopted to the development of neural networks
for detecting the existence, location and extent of the damage successively.

To investigate the feasibility of the proposed methodology, an experimental test has been made on a
simple span three-girder bridge model with span length of 5Sm. For the 1* level ANN, independent
ANNS s of the same quantity of sensors are constructed and acceleration signals of undamaged state
are used as input data for the corresponding ANN. The output values of the 1¥ level ANNs are the
signal anomaly index for the sensors. The absolute values of the output of the 1* level ANN have
been used for detect of damage existence, and the pattern of whole values have been used for the
input of 2™ level ANN to identify the location and extent of the damage.
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2. Experimental Test

For the acquisition of the acceleration signal, simple span three-girder steel bridge model has been
tested. The span length of the model bridge is 5.0m, the width 0.8m, and the height of the girder
0.1m. Each girder has two bolt connections at the points of 1/4 and 3/4 of the span. This type of
connection was intentionally invented to simulate the second case of damage. A general drawing of
the model bridge is shown in Fig.1.

Five accelerometers were used for data acquisition and total 15 points were selected as
measurement location as shown in Fig.1. Vibration was induced using impact hammer and 5 hits for
each damage case was performed. The sampling rate of the signal was set to S00Hz and 2 seconds
of time signal was fed into the ANNs.

This study simulated the 2 different types of damage cases: 1) the connection release at the 1/4
location of the 1% girder that involves 3 steps and 2) the center part damage of the 1* girder involves
6 steps. The damage extents are gradually increased as the steps proceed. The first damage scenario
was made by releasing the bolts of the connection while the second damage by cutting the member
with different extent. A series of the damage scenario is summarized in Table 1.

Table 1. Damage scenario of experimental test

Damage extent Location
1 2 3 4 5 6 (plan view)
Casel »
73% 32% 5% (0.75,1.0)
Case2 *
5,10
88% 71% 57% 32% 20% 14% (05,1.0)
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3. The 1% Level ANN

The 1* level ANN is designed to check hardware malfunction and signal anomaly at a time. The
network consists of 3 layers of an input, a hidden and an output layer. Each layer has 500, 10, and 3
nodes respectively and all layer uses tangent sigmoid transfer function. The network was trained to
output zero for undamaged sensor signal, unity for no signal (connection failure), and minus unity
for noise signal (hardware malfunction) as anomaly index. If the signal changes due to the damage
of the structure, the anomaly index will change from zero to other value between +1 and —1.

As a pre-processor for the input data, input time signal was transformed to FFT amplitude spectrum
and the transformed spectrum was fed into the input layer.
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Fig.2 Architecture and Sample Input of the I* Level ANN

Because there were 15 measurement points, ANNs of the same quantity were constructed for the
individual sensor. Each network will output the anomaly index for the corresponding sensor, thus
total 15 anomaly indices are obtained as a result.

The signal measured on the damaged model was tested to the 1* level ANN that was trained using
the acceleration signal of undamaged model. The signals for 5 times of hammering obtained at the
15 sensors location were used as inputs and their outputs shows very similar pattern for the same
damage case of model but different patterns for different cases of damage cases as shown in Fig.3.
Based on the simulation results for the 1% level ANN, the outputs of the 1* level ANN are possible
to be used as inputs to the 2™ level ANN that predicts the damage location and degree.
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4. The 2™ Level ANN

The 2™ level ANN is designed to identify damage
location and extent using the outputs of the 1* level
ANN as inputs. The structure of the 2" level ANN
consisting of 4 layers in total including two hidden
layers is described in Tables 2 and 3. Squashing
types of function of the tansig and the logsig
function are used as transfer functions. The output
nodes represent damage location in the direction of
longitudinal and transverse respectively and its
damage extent.

Experimental results were used to train the 2
level ANN and verified as shown in Fig.4. The
learning process was repeated in thousands of times
of epoch until their results were finally converged

within the error limit of 0.001 in SSE. All the three
outputs were appeared to be almost identical to the
corresponding target values. Therefore it was

/
¥
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sensor number

damage case #24

Fig.3 Output pattern of the 1* Level ANN

Table 2. Architecture of the 2" Level ANN

verified that the outputs of the 1% Level are

possible as inputs to identify the damage location
and extent. To investigate the performance of the

trained network under noisy signal condition, two

noise cases were tested. The noisy vectors have

noise of 1% and 5% respectively. Fig.5 shows the

results obtained from the 2™ Level ANN with 1%

# of Nodes | Transfer Func.
Input Layer 15
1* Hidden Layer 5 Tangent Sig.
2" Hidden Layer 5 Log Sig.
Output Layer 3 Log Sig

noise and Fig. 6 with 5% noise. Regarding the
identification of the damage location, the degree of
noise does not affect the results of the 2™ level
ANN but affect largely to the prediction of the
damage extent.

However, considering that the measured values of

Table 3. Output nodes of the 2" Level ANN

most structural responses in reality are less than

1% of signal-noise ratio, such discrepancy may not
become a big trouble in practical application.

Moreover, an automated health monitoring system

will be done mostly in parallel with visual

inspection and therefore it seems more realistic and

Node # Meaning
1 Longitudinal Location Index
2 Transverse Location Index
3 Damage Extent Index

feasible to identify the damage location using the
bi-level ANN rather than damage extent and
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location together.
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Fig.4 Training results of the 2™ Level ANN

test result of output node1 test result of output node2 test result of output node3
1 2 1 2
0.8 0.8 0.8 ®
3 3
g’ 0.6 3 0.6 3 06
% 0.4 % 04 § 0.4
g
0.2 02 0.2
0y 0t 0
0 0.5 1 0 0.5 1 0 0.5 1
target value target value target value

Fig.5 Test result of 2" Level ANN (with 1% noise)
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Fig.6 Test results of the 2" Level ANN (with 5% noise)
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5. Conclusions

This study has proposed the bi-level artificial neural network (ANN) for determining structural damage using the
inputs of acceleration signals measured directly by the accelerometer sensors. As a first step, the first level ANN
detects the damage existence of the model structure in terms of signal anomaly index ranged from -1 to +1 at the
location of sensor installed. And then the 2™ level ANN identifies the damage location and extent using the
anomaly indexes of the 1* level ANN. The bi-level ANN has been approved as a promising tool to predict the
damage existence and location fairly well. This study provides an initial step toward the development of
monitoring-based structural health assessment and there still remains a lot of comprehensive study needed to
complete the assessment system suitable for more practical purpose.
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