Regulation of gonadotropin subunit gene expression by testosterone and gonadotropin-releasing hormones in the goldfish

손영창 강릉대학교

서론

Sex steroids differentially regulate gonadotropin (GTH) β subunits (FSH β and LH β) gene expression in the pituitary of goldfish: a strong in vivo inhibitory effect on FSH β mRNA production, but a weak stimulatory effect on LH β in sexually immature and recrudescent fish. In the present study, to examine a direct effect of testosterone (T) and gonadotropin-releasing hormone (GnRH) on the mRNA levels of FSH β and LH β subunits in the pituitary, in vitro experiments were performed using dispersed pituitary cells of sexually immature, recrudescent, mature and regressed goldfish.

재료 및 방법

Fish were kept in a 1000-l indoor recirculating tank at $20\,^{\circ}\text{C}$ under 14L:10D photoperiod conditions. The pituitaries were collected in ice-cold culture medium (RPMI 1640). After a brief mechanical dissociation, the washed and pelleted cells were resuspended in the culture medium and maintained at $20\,^{\circ}\text{C}$ under 3% CO₂ and saturated humidity. Quantification of mRNA level in the cells was perforned by Northern blot analysis.

결과 및 요약

T treatment <u>in vitro</u> did not significantly decrease FSH β mRNA levels, but increased that of LH β only in the cells of immature fish. Salmon-type GnRH increased FSH β mRNA levels in cells of mature fish, but decreased the levels in cells of sexually regressed fish. From these results, it was suggested that: (1) in vivo effect of sex steroids on gene expression of GTH β subunits is not always exerted on the pituitary; and (2) the different responses of GTH β subunits by sex steroids between <u>in vivo</u> and <u>in vitro</u> are partly due to a complex pathway through hypothalamic factors, such as GnRH, in the case of <u>in vivo</u>.

참고문헌

Sohn Y.C., M. Kobayashi and K. Aida. 2001. Comp. Biochem. Physiol. 129: 419-426