An Extension to TCP HACK for Improving the Performance of TCP in

Lossy Environments

Ying Xia Niu, Choong Seon Hong
School of Electronics and Information, Kyung Hee University

niuyx@networking kyunghee.ac.kr, cshong@khu.ac.kr

ABSTRACT
TCP has been designed and tuned as a reliable transfer protocol for wired links. However, it incurs end-to-end
performance degradation in wireless environments where packet loss is very high. TCP HACK(Header Checksum
Option) is a novel mechanism proposed to improve original TCP in lossy link. It presents an extension to TCP that
enables TCP to distinguish packet corruption from congestion in losssy environments. TCP HACK performs well when
the sender receives the special ACKs correctly, but if the ACKs are also lost much, the efficient of TCP HACK will not
be prominent. In this paper we present an extension to TCP HACK, which can perform well even when the ACKs are

much corrupted.

1 Introduction

Recent years, supporting Internet service over wireless
network is a hot issue that has attractived many efforts. Many
applications are built on top of TCP, and will continue to be in
the foreseeable future. So the performance of TCP in wireless
environments has received much attention in recent years.
Transmission control protocol (TCP) has been designed,
improved and tuned to work efficiently on wired network where
the packet loss is very small. Whenever a packet is lost, it is
reasonable to assume that congestion has occurred on the
connection path. Hence, TCP triggers congestion recovery
algorithms when packet loss is detected. These algorithms work
reasonably well as the assumption on packet losses remains
valid in most situations. However, in the wireless Internet
environment, the bit error rate is much higher. As a result, the
assumption that packet loss is (mainly) due to congestion is no

4

longer valid and the original TCP cannot work well in
heterogeneous network with both wired and wireless links.

In the following, we first summarize the existing proposed
solutions, indicating their strengths and weaknesses, then
introduce our proposal that can work well in lossy links where

packets losses are in both forward and the reverse path.

2 Related Works

Recently, many protocols have been proposed to alleviate

217

the poor end-to-end TCP performance in the heterogeneous
network environments. These mechanisms can be mainly
divided into two classes: one class uses Performance Enhancing
Proxies (PEPs) [7], the other class is end-to-end mechanisms
that do not require TCP-level awareness by intermediate nodes.
Protocols with PEPs have many drawbacks that should be
considered for adoption in future versions of TCP., So in the
following, we only introduces some protocols related to the
second class.

TCP Tahoe [3] is the original protocol that has Slow-Start,
Congestion Avoidance, and Fast Retransmit algorithms.

TCP Reno [3] is on the top of Tahoe. It introduces a fast
recovery algorithm to TCP Tahoe. After the fast retransmit
algorithm sends what appears to be the missing segment, the
fast recovery algorithm sets the congestion window to a half of
its current window, and invokes congestion avoidance from a
halved congestion window. It doesn’t set the congestion window
to the smallest value like TCP Tahoe does. The reason that
doesn’t trigger the slow-start algorithm is because the receipt of
the duplicate ACKs not only indicates that a segment has been
lost, but also that the receiver can still receive the segments.

TCP NewReno [9]
Acknowledgment algorithm. When TCP enters the Fast

improves Reno with a Partial

Recovery, it records the highest sequence number, if a new

acknowledgment artives during the Fast Recovery but does not

20024 % St Baehs] B sl T =23 Vol. 29. No. |1

cover the highest sequence number; TCP evaluates it as a Partial
Acknowledgment and anticipates that more packets are lost.

TCP Tahoe, Reno, and NewReno will experience poor
performance when multiple packets are lost from one window
of data. With the limited information, A TCP sender can only
learn about a single lost packet per round trip time.

TCP SACK [5], a Selective Acknowledgment mechanism,
combined with a selective repeat retransmission policy, can help
to overcome this limitation. The receiving TCP sends back
SACK packets to the sender informing the sender of data that
has been received. The sender can then retransmit only the
missing data segments.

TCP HACK (Header Checksum Option) [6] is a solution
based on the premise that when packet corruption oceurs. It is
more likely that the packet corruption occurs in the data and not
the header portion of the packet. This is because the data portion
of a packet is usually much la~ger than the header portion for
many applications over typical MTUs. It introduced two TCP
options: the first option is for data packets and contains the 1's-
complement 16-bit checksum of the TCP header (and pseudo-IP
header) while the second is for ACKs and contains the sequence
number of the TCP segment that was corrupted. These
“special” ACKs do not indicate congestion in the network.
Hence, the TCP sender does no: halve its congestion window if
it receives multiple “special” ACKs with the same value in the
ACK field. With this scheme, TCP is able to recover these
uncorrupted headers and thus determine that not congestion but
packet corruption has taken place in the network. TCP HACK
performs substantially better than both TCP SACK and
NewReno in cases where burst corruptions are frequent. But the
authors of [6] performed simulations where the errors were
generated only to packets travel on the forward path. Packets on

the reverse path was not corrupted

3 Proposed Scheme
The idea that proposes an extension to TCP HACK comes
from the structure of TCP SACK. In SACK, the SACK option is

defined to include more than one SACK block in a single packet.

The redundant blocks in the SACK option packet increase the

robustess of SACK delivery in the presence of lost ACKs.

In TCP HACK, the receiver sends only one sequence
number for corrupted data but sequence number can be
recovered in one special ACK packet. If the return path is
lossless, the TCP sender can get the information in time. But
since the return path carrying ACKs and special ACKs is not
losses, so if the special ACK conveying the information that the
packet was corrupted is lost, what the sender could do is to wait
for the timeout.

So we propose to add a buffer in the TCP receiver, and save
all the received packets that data are corrupted but the sequence
numbers in headers can be recovered. Then in the HACK
special ACK option, we acknowledge all these sequence
numbers in the buffer. It should be mentioned that the TCP

receiver does not receive these packets correctly yet.

3.1 Extension to TCP HACK options

In TCP HACK, it introduced two options: one is Header
Checksum option and the other is the Header Checksum ACK
option. In our proposal, we don’t make any change in the first
option {see Fig.1.), but the second option should be extended

(see Fig.2.).

1I’s complement checksum of
TCP header and pseudo-IP
header

Kind=14 | Length=4

Fig.1. TCP Header Checksum option

[Kind=16 [Length: Variable |

1" 32-bit sequence number of corrupted segment to
resend

The nth 32-bit sequence number of corrupted segment
to resend

Fig.2. Extended TCP header Checksum ACK option

3.2 Modification to TCP HACK

With our proposed extended TCP HACK, we add a buffer
in the TCP receiver to cache the sequences of the segments that
are data corrupted but header can be recovered, we call this
buffer SeqBuffer. We should do modifications to the TCP
HACK in the TCP sender when receiving a special ACK, and
modify the TCP receiver when sending a special ACK. See Fig.

218

20024 % TR EAED] & gEUAE

=
h L

A Vol. 29. No. 1

3. and Fig4.

When sending a special ACK

Check if only
one sequence
number in the
SeqBuffer?

Continue as

normal HACK

Generate special ACK (option 16)
Containing all the sequence number
in the buffer.

Fig.3. Modification to TCP receiver when sending a special

ACK

When receiving a special ACK

Check if only one
sequence number
in the ACK
option?

Continue as

t normal HACK

1) Extract all sequence numbers
2) Retransmit the un-retransmitted segment.

3) Discard the special ACK

Fig.4. Modification to TCP sender when receiving a special
ACK

5. Drawbacks

The main drawback of our proposed protocol is the software
overload. Using extended TCP HACK, more complex software
will be on the sender and receiver sides, but while memory sizes

and CPU performance permanently increase, the bandwidth of

219

the air interface remains almost the same. Therefore the higher
complexity is no real disadvantage any longer as it was in the

early days of TCP.

6. Conclusions and Future Work

In this paper, we summarized the existing protocols,
indicating their strengths and weaknesses, and proposed an
extension to TCP HACK. Our proposal can enhance the TCP
HACK in the situation where not only the data on the forward
data are corrupted much, but also the ACKs on the inverse path
are also susceptible to packet corruption.

Simulations are being done to test our proposal by using

OPNET modeler 8.0.

References

[1] Behronz A.Forouzan, “TCP/IP protocol suite” international
editions 2000,271-311
[2] Jochen Schiller,
Education Limited 2000, 290-307

[3] M.Allman,V.Paxson,and W.Stevens,
control”, IETF RFC 2581,1999

[4] Jiangping PanJon W.Mark and Xuemin Shen, “TCP

“Mobile Communications” Pearson

“TCP congestion

performance and its
GlobeCom2000

[5] M.Mathis, J.Mahdavi, S.Floyd, A.Romanow, “TCP selective
acknowledgment options” IETF RFC 2018, 1996

[6] R.K.Balan, B.P.Lee,K.R.R.Kumar, L.Jacob,W.K.G.Seah,

A.L.Ananda, “ TCP HACK:TCP header checksum option to

improvement over wireless links”

improve performance over lossy links”, InfoCom2001
{7 IETF PILC WG
http://www.ietf.org/html.charters/plic-charter. html
[8]J. Border , M. Kojo, J. Griner , G. Montenegro , Z. Shelby ,

homepage,

“Performance Enhancing Proxies Intended to Mitigate Link-
Related”. IETF RFC 3135. June 2001.

[9] S.Ployd, T.Henderson, “The NewReno Maodification to
TCP’s Fast Recovery Algorithm”. RFC 2582

[10] James F. Kurose and Keith W. Ross, “Computer
Networking”, 2001 by Addison Wesley Longman, Inc. 167-260.

