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Second-order nonstationary source separation: Natural gradient learning
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8
Most of source separation methods focus on stationary sources so higher—order statistics is
necessary. In this paper we consider a problem of source separation when sources are second-order
nonstationary stochastic processes. We employ the natural gradient method and develop learning
algorithms for both linear feedback and feedforward neural networks. Thus our algorithms possess
equivariant property. Local stability analysis shows that separating solutions are always locally
stable stationary points of the proposed algorithms, regardless of probability distributions of

sources.

1. Introduction

In the context of source separation, let us assume that
the m dimensional vector of measurement signals, x(tJ,
is generated by a linear data mode! described by

x(t) = As(t) . n
where s(t) is the n dimensional vector whose elements
are called sources. The matrix AeR™ 1is called a
mixing matrix. The task of source separation is to
estimate the mixing matrix 4 (or its inverse), given
only a finite number of measurement signals, {x(t)}, t =
1, -, N. Source vector s(t) is unknown in advance, but
their elements are assumed to be statistically
independent .
Most of source separation methods have focused on
stationary sources, so higher-order statistics (HOS) is
necessary for successful separation, unless sources are
temporally correlated. But, many natural signals are
inherently nonstationary stochestic processes. It was
shown in [1] that source separation could be achieved by
decorrelation if sources are independent second-order
nonstationary stochastic processes.
In this paper we pay our attention to the problem of
second-order nonstationary source separation. We develop
natural gradient learning algorithms for both linear
feedback and feedforward neural networks. Due the
natural gradient method, our algorithms converge to
separation solutions along the steepest descent direction
and possess the equivariant property that was first dis—
covered by Cardoso and Laheld [2]. We also present local
stability analysis of our algorithms and show that
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locally stable
regardless of

separating solutions are always
stationary points of our algorithms,
probability distributions of sources.
As in {1], the following assumptions are made throughout
this paper:

ASI The mixing matrix A has full column rank

ASZ Source signals are statistically independent with
zero mean.

AS3 flf) are not constant with time. r(t) = E{s} (1)}
(0

2. Natural Gradient Algorithms

We consider the objective function proposed by Matsuoka
et a/. [1]. Then we employ the natural gradient method
which was shown to be efficient for on-line learning
{31, [4], [5] and derive on-line learning algorithms for
both feedback and feedforward networks. For the sake of
simplicity, we only consider the case where there are as
many Sensors as sources, i.e., @ = .

2.1 Objective Function

It was shown in [1] that second-order decorrelation is
sufficient for source separation under the assumptions
(AS1)-(AS3). The objective function that we consider is
given by

1

JW) = (Y log E{y] (1)} - log det E{y(1)y" ()} D
1=

where y(t) is the network output vector and det(")

denotes the determinant of a matrix. It takes minima if
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and only if E{y,(ny ()}=0. for i,j=1..n(i#)).

2.2 Feedback Network

In a linear feedback network, the output y(t) is
described by
() =x(t) + Wy(t) . (3)
We calculate the total differential 4y(w),
dIWY=JW +dW)— J(W) 4
due to the change 4w
Define a modified differential matrix
dav =(-wY'dw . (5)

Hence, the gradient of the objective function with
respect to the modified differential matrix 4V is given
by
dIW)[dV = E(N (@)Y (0} -1 6)

where A(f) is a diagonal matrix whose /sth diagonal
element is E{y’(n}-
The stochastic gradient descent method leads to the
updating rule for ¥ that has the form

Ve+) =V @+, - A" OOy 0} (M
where 7, >0 is the learning rate and A(f) is a diagonal
matrix whose Jth diagonal element is A(r) that can be

estimated by

A0 =(1-OAE-1)+& @)
for some small & (say, 6=0.01).
If follows from the definition (5) that the learning
algorithm for # is given by

(8)

AW () =0, -WO)I - A Oy@O)y" (1)) - (9
Remarks

1. The algorithm (9) can be viewed as a special
form of the robust neural ICA algorithms
developed by Cichocki and Unehauen [6].

2. The algorithm leads to a simple form of
nonholonomic ICA algorithms proposed by Amari et
al, [7]

2.3 Feedforward Network

In a linear feedforward network, the output y(¢) is

given by

() = Wx(t) . (10)
Define a modified differential matrix

&V =wldw . (1)

Then, the natural gradient learning algorithm for # has
the form

AW (@) = g, A (AE) - YOV OW @) - (12)
Note that two remarks described for the case of linear
feedback network also hold in this case.

3. Local Stability Analysis

Stationary points of the algorithm (9) or (12) satisfy
E(I-N'Oy0)y () =0 (13)
which implies that E{y, (t)y] ©}y=0 for ,j=1..,m@GE=j).
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In order to show that stationary points of (9) are
locally stable, we need to show that the Hessian 42J is
positive. For shorthand notation, we omit the time index t
in the following analysis.

Recall -hat
dJ = E{y" A dVy}—~tr{dV}. (14)
Then the Hessian d?J is
dJ = EQy dVIA'dVy + yT A dvdVy} - (15)
After scme calculation, we have
(16)

224, + 2.4,

1) i

A
d'J= Z[-;l'—(arv/,)2 +dv,dv,]=
[

J

g A,
where 9, = /]:"(dv/,)z +dvudv/' )
J

One can easily see that the summand in the second term

in (16) is always positive. The summand in the first
term in (16) can be rewritten as
A "
A, f (17)
q,,+q,, :[dvlj dvﬂ A ':dvjil
1 2%V
A

J
The equztion (17) is always non-negative. Hence d%J is
always positive. The stability of the algorithm (9) does
not depend on the probability distributions of sources.
Thus our algorithm is always locally stable regardless
of the probability distributions of sources.

4. Numerical Examples

We have performed experiments with 3 digitized voice
signals, all of which are sampled at 8 kHz. Three
mixture signals were generated using the mixing matrix
given by
0.224 0.055 0.469
A=|0.162 0.505 0.476
0.933 0.649 0912

We evaluate the performance of three algorithms:
Algorithm 1: the Matsuoka' s algorithm in [1].
Algorithm 2: the natural gradient algorithm (9) for
feedback network.

Algorithm 3: the natural gradient algorithm (12) for
feedforward network

The constant learning rate ; —ggpos Wwas used for all

(18)

three algorithms.

As performance measure, we use the performance index
(PI) defined by

i)

i=1 k=1 Max |8,
where g;; is the (i,j)th element of the global system
matrix ¢ ( G=({-W)'4 for a recurrent network,
G =WA for a feedforward network) and max;g;; represents
the maximum value among the elements in the 7sth row
vector o° (, maxjg;; does the maximum value among the
elements in the sth column vector of &.

Z": |84 —1

¥=1 maX,Ig,,
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In addition to the performance measure (19), we also
calculated the Signal to Interference Ratio Improvement
(SIRI) defined by

2
SIRI, = 5{%—“ o] )J
E{y,~s,)

Numerical experimental results are shown in [Fig 1] and
are summarized in [Table 1]. Poor performance of
Algorithm 1 might result from the simplification
approximation made in [1] which is not reasonable for
the case of n > 2.

Moreover, our algorithms possess the equivariant
property, thus they give satisfactory results even for
the case of ill-conditioned mixing. More details can be

(20)

found in [8].

Type of Algorithm | SIRI

Matsuoka [1] SIRI= 16.0 dB
SIRI,= 14.8 dB
SIRI3= 36.5 dB

Feedback (9) SIRI= 68.1 dB
SIRI,= 61.5 dB
SIRI;= 65.1 dB

Feedforward (12) SIRI;= 68.0 dB
SIRI,= 61.5 dB
SIRIs= 65.2 dB

[Table 1]. Performance Compariscn in Terms of SIRI

5. Conclusions

Two natural gradient learning algorithms which perform
second-order nonstationary source separation. We also
presented local stability analysis of the algorithms and
showed that separating solutions are always locally
stable stationary points of the proposed algorithms,
regardless of probability distributions of sources.
Numerical experimental results confirmed the high
performance of the algorithms.
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[Fig 1]. The evolution of performance index is shown



