Proceedings of the Korean Information Science Society Conference (한국정보과학회:학술대회논문집)
- 2002.04b
- /
- Pages.235-237
- /
- 2002
- /
- 1598-5164(pISSN)
Performance Estimation of Fuzzr Quantitative Association Rules and Crisp Quantitative Association Rules
퍼지 연관규칙과 연관규칙의 성능 평가
Abstract
연관규칙(association rule)이란 데이터 베이스에 존재하는 속성들 사이에 유사성 또는 패턴을 기술하는 것으로, 사용자에게 데이터에 관한 유용한 조보를 줄 수 있다. 그러나, 지금가지의 연관규칙은 이진 (boolean) 데이터 베이스에 존재하는 연관규칙의 발견에 대해서 주로 연구되어 왔으며, 정량적(수치적, quantitative) 속성을 갖는 데이터에 대한 연관규칙의 연구는 미비하였다. 그 이유는 정량적 속성을 갖는 데이터를 기호적(nominal) 속성값으로 바꾼 후 연관규칙 보다 성능이 우수함을 보이고 있다. 또한 본 논문에서는 퍼지 연관규칙에서 소속함수(항목, 아이템, 속성값)의 모양과 개수를 데이터 분포에 대한 통계적 특성을 나타내는 히스토그램을 이용하여 소속함수를 자동 생성하는 효율적인 연관규칙 추출방법을 제안한다
Keywords