200295 CHEHET|2E| siAlEtET s =RE 2002.7.10-12

=

AN HAL 2R ATENH0 IHAYI0N 25t S

=g 2

C2EM . Ol

SRICHE D HSMOIBSID, 21 ead 7’

Toward the Personal Robot Software Framework

Hong Ryeol Kim',

Dae Won Kim'. Hong Seok Kim . Ho Gil Lee™

Department of Information Control Engineering, MyongJi University’, KITECH

Abstract - In this paper, a software framework is
proposed for the personal robot located on home network.
The proposed software framework is divided into four
layers-a transparency layer, a behavior layer, a distributed
task layer, and a mission scenario layer. The transparency
layer consists of a wvirtual machine for platform
transparency, and a communication broker for
communication transparency among behavior modules. The
communication architecture includes both server/client
communication and publisher/subscriber communication. A
mission scenario is assumed to be a composition of
sequentially planned distributed tasks. In addition to the
software framework, a new concept, personal robot design
center platform is proposed in this paper with its
implementation mechanisms. The personal robot design
center is defined as a developing and a managing
environment for high-level behavior modules, distributed
tasks, and mission scenarios.

1. Introduction

The market of personal robots, being enlarged rapidly, is
led by many companies of small or medium size, while the
market of industrial robots is led by a few companies of
huge size. The trend can give a chance to the market to
be enlarged more rapidly along with the emergence of
functional hardware module manufacturers. The emergence
of functional hardware module manufacturers makes
customers assemble their own personal robots with their
favors and manufacturers reduce their manufacturing costs
with mass production.

Hardware modularization can be achieved with a standard
software framework that can guarantee interoperability
among the modules and capability of processing distributed
tasks. Also the software frameworks should preserve
existing know-hows of manufactures in addition to the
above requirements.

The personal robot has the other difficulties concerning
its operation compared to them of the industrial robot as
follows:

1) Usually customer or end user can be a manager of the
personal robot, while specified managers are needed for
the industrial robot.

2) It can be expected that various kind of requirements for
the personal robot are needed according to personal
usages, and the life time of the requirements is short.

3) Even if the modularization mentioned previously is
possible, it shall be difficult to make programs for the
distributed modules.

In this paper, a personal robot software framework is
proposed to resolve above problems. The proposed
framework is divided into four layers-a transparency layer,
a behavior layer, a distributed task layer, and a mission
scenario layer.

The transparency layer is composed of a virtual machine

for platform transparency, and a communication broker for
communication transparency among behavior modules. The
communication architecture includes both server/client
communication and publisher/subscriber communication.
With the transparency layer, the behavior modules,
practical implementation units of functions, can have
interoperability among them and real-time capability. The

behavior modules with concurrency are software
components for the easiness of maintenance and
replacement.

The distributed tasks, logical groups of distributed

behavior modules can perform specified tasks on the
distributed environment.

The mission scenario, a sequential logic of the distributed
tasks is a minimum service function in the view point of
customers.

In addition to the software framework, a new concept of
personal robot design center platform is proposed in this
paper with its implementation mechanisms. The robot
design center is defined as an environment for
programming, installing, managing and maintaining behavior
modules, distributed tasks, and mission scenarios. The robot
design center provides GUI(Graphic User Interface)
environment and function of file trasfer between database
repository embedded and personal robots through internet
remotely or home network locally.

In the following chapters, related works previously done
are described in chapter 2. A new personal robot software
framework and a robot design cente platform with their
mechanisms are proposed in chapter 3. Finally conclusions
are described in chapter 4.

2. Technical Backgrounds

2.1 Robot Contro! Framework

Prior to the emergence of component concept in the
modemn software engineering, the behavior-based robot
framework[1] was proposed as a robot control framework.

A behavior is a minimum functional unit for achievement
of a goal. Each behavior has layered architecture according
to its computation complexity and frequency. With more
complex computation and lower frequency, a behavior is
placed on higher layer. With the behavior-based robot
framework, highly-layered behaviors can override and limit
outputs of Jowly-layered behaviors. Consequently, the
structure of the framework is known to be adequate for
autonomous robots to meet real-time constraints.

A robot framework for robotic workcells[2] employs
components concepts of the modemn software engineering,
design by composition and reusability of components. The
framework is composed of machine block components,
hardware interface components, and workcell manager
components, the structure of which is similar to well-known
3-tier structure.

2.2. Virtual Machine

Recently the trend of compiler is that the compiler is
designed to be divided into two parts. The first part makes
intermediate codes from source codes, and the second part

- 2410 -

makes object codes from the intermediate codes. The
division makes it possible to have the first part transparent
to platforms and portable. P-code of Pascal, byte code of
Python, and another byte code of Java are well-known
intermediate codes, and related virtual machines serve as
the second parts. JVM(Java Virtual Machine){13] is the
stack-based virtual machine of Java byte codes optimized
for code minimization to achieve network mobility, thread
handling, and exception handling.

2.3. Communication Transparency)
To reduce complexities and to increase flexibilities in

various distributed environments, communication
transparency should be guaranteed. i
The most well-known component systems with

communication transparency are COM/DCOM from
Microsoft and CORBA from OMG(Object Management
Group). Particularly the CORBA provides both early
binding(compile-time binding), and late binding(run-time
binding), with both of server/client and message
communication, The transparency is guaranteed by
ORB(Object Request Broker) embedded. A study on the
real-time ORB[4] was performed recently.

Neuron C[5] of Lonworks systems is another example of
transparency provider. In case of Neuron C, ANSI
C-extended definers provide ways for users to define
network variables bond lately. Only the limitation of
Neuron C is that the transparency is for network variables
among hardware platforms separated physically.

2.4 Real-Time Scheduling
Real-time scheduling is divided into real time operating
system scheduling and real-time communication scheduling.

1) Real-time operating system

The real-ime operating system is the operating system
with a real-ime task scheduler (or a real-time thread
scheduler) and a shared data manager.

The real-time scheduler maintains real-time scheduling of
all tasks in multi-tasks environment (or real time of all
threads in multi-threads environment). RMS (Rate
Monotonic Scheduling)[6] with static scheduling method and
EDS(Early Deadline Scheduling){7] with dynamic scheduling
method are the most well-known scheduling methods
currently.

The shared data manager manages priorities to access
shared data. Priority inheritance protocol[8] is one of the
most outstanding mechanism that can prohibit priority
inversions.

2) Real-time communication

Communications among software modules can be divided
into cyclic communication and acyclic communication.

The most well-known cyclic communication method is
message communication. The message communication can
be divided into the point-to-point message communication
and the publisher/subscriber communication. Usually the
message communication is achieved through queues and so
can guarantee real-time features. While the message service
provider is not needed in case of the point-to-point
communication, it should be needed to schedule publishing
and subscribing in case of the publisher/subscriber
communication.

The JMS(Java Message Service){9] is a framework that
can provide both the point-to-point communication and the
publisher/subscriber communication. There is another study
that suggested real-time mechanisms for the
publisher/subscriber communication using the UDP(User
Datagram Protocol)[10].

One of the most well-known acyclic communication
method is the server/client communication. Usually the
server/client communication can not be used for real-time
communication because of event synchronousness between
a server and a client. However the server/client method can
compensate event handling. The RPC(Remote Procedure
Call)[11] and the RMI(Remote Method Invocation)[12] are
server/client communication methods with distributed
environments.

2.5 Run-Time Maintenance

JAVA provides dynamic loader that can load software
module at run time[3]. The most outstanding features of
the class loader is that it enables software components
loaded or unloaded at run time, and that it can be handled
by programmers. Similarly, Linux provides mechanisms to
access dynamic linker that can enables dynamic linking
libraries to be loaded or unloaded at run time.

3. Personal Robot Sodtware Framework

3.1 Personal Robot Software Framework

A personal robot software framework extended from the
existing behavior-based framework is proposed here. The
whole layered architecture of the framework is shown in
Fig. 1.

Fig. 1. Layered Architecture of the Personal Robot
Software Framework

3.1.1 Robot Platform Layer

The robot platform layer includes know-hows and
uniqueness of hardware module that module makers can
embed independently.

3.1.2 Transparency Layer

The transparency layer is the media between above
layers and the robot platform layer. This layer is composed
of a virtual machine and a communication broker, and lets
the above layers be independent on the robot platform
layer.

3.1.2.1 Virtaal Machine

The proposed virtual machine is a light stack-based byte
code interpreter and the compiler that has ANSI C-extended
definers.

tconfle sharsd, - Shared gmd Naw-Veletlle Variatla
tharon(300, soud (ref_vommand voud),

© Thresd Fraction it Fablinher sod Cliont

thread vk rove (ol il i
e oty RET_BLOC achi | ARG FLOC . o), et st FET.BLOC w| ARG ELOC), 4 of Clent

chelerton of Server teeface owpat Mog_Tag post_X,
vierface st My Tag posttion, Subecriber Derlaration et 8, 7Tiemer Derlara
oy RET_BLOC s,
at pos, rag e Tag (Poxt, X, |1 Toblishar Ragistratien
Sk (101, Hablng Thrcad with 16 nS ey
i whie :
pordequgostions, Selncriving 1 o, it bt e om0,
g wran,_chkuref_aceusie) Servie Raquest Chark v-30, Thwer Inkinlkzstion
‘botfy tref_atuale, atuat_oplarg, pos mh)) | [
Service Performance ané Notiication | et et ug), Servie Roges t Server
Iod et |

i
.mhn.n.-m Arcess Right Releamefor Shared Batn ' §
| Server huplemmatatios
| i actuste_mp | ARG_BEOC acy. it pod |
o pod-argaly
B)(Excoption Invecstion (hark
Tou_lib (wtuaie dI, puas arg i), Natve Cods Liteasy

1
s (DEVIDE_BY_ZFRIn Exeeption Handing
rewin 0,

i
Tock (shared
barede-

o, ishweds,
w1,

Fig. 2. Source Codes for the Proposed Virtual Machine

The followings are descriptions on the ANSI C-extended
features of the virtual machine compiler and the example
of the source codes are shown in Fig. 2.

- 2411 -

1) Software timer
Methods for handling software timers like timer
declaration, timer initialization, and timer expiration
check are provided.

2} Exception handling
Methods for catching exceptions and handling the ones
are provided.

3) Expressive reference
Since exsisting pointers of ANSI C are very complex to

that enables communication transparency is included in
template files.

Server/client communication is used for non-real time and
acyclic communication. Event synchronousness functions for
threads are used for the communication implementation. A
argument type and a return type are provided for universal
use as shown in Fig. 2. The implementation mechanisms
are the same as follows:

to be implemented as dynamic linking libraries which are
able to be loaded in threads.

; <tes Auiorominss Moveg Mode - . B Module >

t Chant> EEEN 394 <Cluonei> “Channel> KB 394 <Chanset>
O~Physical Address—>

<A-Phyucal Address-->
<Addrezs> 100 01 <Addras> <Addm:

> 10002 <Addres>

<Behavior Module dentfierref_move™>
“Verion> 1 D Varsion>

<Beiavior Module sbonsfier~"re(command ™
<Varsion> 20 <Version>

<Pnod 100 wherad> Penod> $0D </Period
“Config> shared <Conbg> <Config> </Confg
<Serves ennber="ref_actuse_mp> <Sever> </Server

{ <Rewn>RET_BLOC <Retum> <Chieor>

<Arg datfir="1"> ARG_BLOC <Arg=
<deg Manifier=2"> mt <A

<Retum> RET_BLOC </Retum>
<Arg Wenifier=—1"> ARG_BLOC <Arg>

“Server <Buading> 0.1 1 sctuate,_mp <Bndng>
“Clpentr < Chrr> “Chens>
Publither < Pbiiher wdeonsBerposs 3>
<Sutseribar sdenafier=Fostoen> <btsg_Tog shentifier="1>
<Type> mug g </Type? <Prionty> 1 </Prionty>
<SubSaiber> <Penod> 58 <Paod>
</Behaver Modute “Binding > 1001 0 Postion <Bedng>
<Klog, Teg>
/by
<Subncribar <SubScriber>
«/Bebavior Moduie>

Fig. 3. Example of Robot Platform Template File

8) Generation of robot platform template file

When a user compiles a source codes, a robot platform
template file is generated automatically by the compiler.
Here, the platform template file is a XMIL(eXtensible
Markup Language) format including such information as
platform identification, configurable properties, and
interface binding information. The template files of the
example codes in Fig. 2. are shown Fig. 3. The template
file is used by personal robot design center platform,
communication broker, and dynamic thread loader.

3.1.2.2 Communication Broker

Location transparencies of server/client communication
and publisher/subscriber communication are provided by the
communication broker proposed. The binding information

adopt for a virtual machine and they make the virtual Stepl :To request service to a server, a client delivers the
machine dependent on a hardware platform, no service function reference and an argument type
pointer-related feature is provided for the virtual machine instance to the below virtual machine. The
proposed. Anyway there are reference methods to data or reference defined within the client has same
functions expressively. function as generally known stub.

4) Thread contro} Step2 :The virtual machine pushes the client into wait
The compiler of the virtual machine proposed provide a queue, and delivers the service function reference
definer to define thread functions expressively. And other and the argument to the below communication
functions related to thread controls such as thread period broker.
set, thread hold for time synchronousness, event release Step3 :The local broker investigates the binding information
and wait, event release check, and event notification for of the service function through robot platform
event synchronousness. The functions for event template file. If the service is local platform
synchronousness are used mainly for server/client service, it shall set event release for the practical
communication. Shared data and shared functions can service. If the service is remote platform service, it
be defined outside of any thread function, and the virtual shall deliver the request through inter-broker
machine handles the access of the shared sections. protocol referred physical address bond.

5) Communication control Step4 For the delivered service request, the broker on the
Expressive definers of lately-binding variables are remote platform sets event release for the above
provided for transparency. Server/client communication server.
control can be implemented using the previous thread Step5 :The server calls the existing service function to
control functions. A message tag definer, a publishing serve the service request and notify the execution
registration function, and a message queue subscribing of the service by delivering a retun type instance
function are also provided for publisher/subscriber and the service function reference to the below
communication. virtual machine.

6) Non-volatile variable Step6 The virtual machine delivers the return type instance
The robot platform is a kind of embedded system, so it and the service function reference to the below
should provide a way to store variables in non-volatile broker.
memory area, like EEPROM or flash memory using a Step7 :The broker investigates the reference. If with local
definer. platform request, it shall resume the client and

7) Native code interface deliver the result. If the request is remote platform
Method for handling robot platform directly, not through request, it shall deliver the request through
the virtual machine is provided. Software modules that inter-broker protocol.
handle robot platform with native codes should be able Step8 For the delivered return, The originating broker

and delivers the

client

resumes the return.

Fig. 4. Publisher/Subscriber Communication Mechanism

Publisher/Subscriber communication is used for real-time
and cyclic communication, and the real time feature is
guaranteed by a communication broker. The broker manages
message instance queues for message tags.

A message tag Is assigned to a subscriber, and several
publishers can publish messages of the message tag
instance. There is a reguest queue to manage access
requests from a subscriber and publishers for a message
instance queue, and access acceptances are allowed by
priority scheduling.

A publisher calls a publisher registration function with
priority as an argument before the first publishing. A
publishing period is defined according to the argument by

- 2412 -

communication broker. The priorities of all publishers are
always lower than it of the subscriber.

A broker configures access periods according to the
priorities and current binding information extracted from
robot template file. Periods configuration is invoked when a
publisher calls the registration function or the binding
information is changed. Publisher/subscriber communication
mechanism with transparency is shown in Fig. 4.

3.1.3 Behavior Layer

The behavior layer is composed of distributed behavior
modules. A behavior module is defined as a minimum
functional component with interfaces and functions provided
by a robot module maker or personal robot design center.
One and more behavior modules are delivered on a robot
platform and communicates with each others to exchange
task information. A behavior module is implemented into a
thread, and consequently can run concurrently with others.

For an example, in case of autonomous vehicular robot,
"Driving” and "Detecting Obstacles” are thought to be
concurrent functions for achieving a goal, "Moving",
"Driving" and "Detecting Obstacle" are behavior modules
for a task, "Moving".

Each behavior module serves a specified function
concurrently with each others. And the real-time processing
of the functions is guaranteed by the virtual machine.
Proposed real-time scheduling method of the virtual
machine in this paper is the RMS(Rate Monotonic
Scheduling). As described previously, each thread can be
assigned a period. The following formula is for the
real-time schedulability, Wn of the RMS:

Wn = n(2(l/n) - 1) where, n : Number of Task 1)

As described previoulsy, message tag instances assigned
to a behavior module can accept several publishing
messages. Consequently, behavior modules can be
implemented to check published information and plan
reactions automatically. The above means that the proposed
framework is functionally similar to the previous
behavior-based framework[1].

3.1.4 Distributed Task layer

A task means the minimum unit of work process, and
practically a logical group of connected behavior modules
for achieving the function of the task. Practically, a request
for a task performance is implemented as request for a
service to the server located on the highest logical layer on
the group of connected behavior modules. Since task should
be structured guaranteeing its transaction, there should not
be external interrupt that can affect on the task
performance. All things that can affect on the task
performance should be embedded in the task as behavior
modules.

me Task

O PtintveScbmcrter

Fig. S. Scalability of Distributed Task

Because the locations of behavior modules are transparent
by the communication broker mentioned above, a task can
be distributed. With the above example "Driving" and
"Obstacle Detecting” can be on a same robot platform, or

on different robot platforms separately. The transparency
consequently guarantees the scalability of robot platforms.
The concept of scalability with distributed tasks is shown
in Fig. 5. In Fig. 5. behavior modules can be scalable to
achieve a goal. Anyway, the smallest-sized behaviour
modules make it flexible to replace or maintain them
seamlessly and comfortably.

3.1.5 Mission Scenario Layer

A mission scenario being composed of sequential
handling of the distributed tasks is a minimum service unit
in the view point of customers. In the extended case of the
above example, "Holding at a Room" can be a mission
scenario that is composed of a task, "Moving" and another
following task, "Holding". The mission scenario layer is not
a implementation layer, but a logical layer implemented as
a administrating task with a specialized behavior module.
The behavior module has only service-call statements
through server/client communication and some sequencial
control statements for the time and event synchronousness
among the processes of tasks.

Usually the behavior module implementing the mission
scenario is embedded in a brain-like robot platform.
Logically centralized form of the mission scenario enables
the scenario to be clear to customers and still holds the
benefits of distribution by decentralized process of tasks.

The relationship between mission scenario and distributed
task is shown in Fig. 6.

3.2 Personal Robot Design Center Platform

Personal robot design center is a platform for installing,
maintaining, and replacing two or more home networked
robot platform on internet or home network.

Installation of robot platform means software composition
by late binding of behavior modules and consequently,
implementation of distributed tasks. Maintenance means
development of mission scenarios, development of
higher-level behavior modules and installation of the
modules. Replacement means replacement of exsisting
behavior modules on robot platforms. Concept of the
personal robot design center with its communication
framework is shown in Fig. 6.

3.2.1 Communication Frameworks

When a personal robot design center is located on
internet, the personal robot design center can access home
network indirectly through home server. Consequently, a
home server is only the node that communicates with
personal robot design center on intemet. The
communication protocol between a home server and a
personal robot design center is FTP(File Transfer Protocol).
Personal robot design centers can upload robot platform
template files and can download updated robot platform
template files again with intermediate codes through the
home server if required.

The home server can gather all robot platform template
files from all robot platforms connected on the home
network, and also distribute template files and intermediate
codes to specified robot platforms. The communication
protocol between the home server and the robot platform is
local version of FTP. The local FTP and inter-broker
protocol mentioned previously are application protocols
based on the same lower protocol stacks. The personal
robot design center also has the local FTP that enable the
robot design center can be a node on home network.

3.2.2 Late Binding

Late binding is implemented with updating robot platform
template files. The robot platform template files can be
uploaded through the intemet FTP or the local FTP, and
can be downloaded again for communication brokers and
dynamic thread loader to refer them.

The personal robot design center provides both a GUI
environment and a text environment, and they can be
exchanged with each other.

The GUI environment proposed here is a
VISIO{14]-based application implementing the VISIO object
clients. The VISIO acts as COM servers and provides
Automation. The VISIO provides good solution for late

- 2413 -

binding analysis. The binding is implemented using The
VISIO Connection objects, and the object provides wealthy
properties that can enable analysis more accurately.
?nalyzed results are updated on robot platform template
iles.

A Shape object in the VISIO means a behavior module
in the personal robot, and a Sheet object means a
sub-network of one or more robot platforms connected.

3.2.3 Development of Higher Behavior Modules

Development of higher behavior modules is same as that
of lower modules. The personal robot design center
provides a virtual machine source code editor and a
compile environment. The personal robot design center
investigates the periods of higher level behavior modules,
and assesses the RMS schedulability referred to robot
template files that contain periods of all behavior modules.
When the real-time processing is anticipated to be
violated, the personal robot design center resets the period
with user's notification.

3.2.4 Development of Mission Scenarios

Development of mission scenario is a special case of
higher level behavior module development with only the
server/client communication excluding the
publisher/subscriber communication. The period of the
behavior module is assigned by the personal robot design
center. The robot design center provides not only the
virtual machine source code editor and the compile
environment, but also the GUI environment using the
VISIO in the format of classical flow-chart.

3.2.5 Replacement of Behavior Modules

The replacement of behavior modules is run-time
replacement mechanism. A dynamic thread loader on a
robot platform performs thread loading and unloading
without intervention of users. Thread loaders investigate
robot platform template files and extract version information
from them, and make decision of replacement, elimination,
and the addition of thread.

omIN-gng

Fig. 6. Concept of Personal Robot Design Center

4. Conclusions

In this paper, a personal robot software framework and
its mechanisms are proposed.

The personal robot software framework is layered
structure, composed of a transparence layer, a behavior
layer, a distributed task layer, and a mission scenario layer.
Through the personal robot software framework, the
interoperability and distributed task implementation can be
achieved.

In addition to the personal robot software framework, for
the rapid installation, maintenance and replacement of
personal robot platforms, the concept and the mechanisms
of the personal robot design center platfrom are proposed
in this paper with its GUI features.

As further researches, real-time control features of the
personal robots with the personal robot software framework
should be studied. Also, run time debugging and simulation
mechanism will be proposed with the robot design center
platform.

References

[1] Rodney A. Brooks, "A Robust Layered Control System
for a Mobile Mobile Robot", /EEE Journal of Robotics
and Automation, Vol. RA2, No. 1, pp.14-23, 1986.

[2] Beck, J.E., .M. Reagin, T.E. Sweeney, R.L. Anderson,
and T.D. Gamer, "Applying Component-Based Software
Architecture to Robotic Workeell Application”, [EEE
Transactions on Robotics and Automation, Vol. 16,
No. 3, pp.207-217, 2000.

{3] Thormas Jensen, Daniel Le Matayer, and Tommy
Thorn, "Security and Dynamic Class Loading in Java:
a Formalisation", IEEE Proceedings on Conference on
Computer Language, pp.4-15, 1998.

[4] D.C. Schmidi, D.L. Levine, and S. Mungee, "The
Design and Performance of Real-Time Object Request
Brokers", Computer Communications, Vol. 21, pp.
294-324, 1998.

[5] Raza S. Raji, "End to End solutions with Lonworks
Control Technologies", hitp://www.lonmark.org/solution.

[6] J. Lehoczky, L. Sha, and Y. Ding, "The Rate
Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior', /EEE
Proc on Real Time Symposium, pp.166-171, 1989.

[7] H. Chetto and M. Chetto, "Some Results of the
Earliest Deadline Scheduling Algorithm”, IEEE
Transactions on Software Engineering, Vol. 15(10),
pp-1261-1269, 1989.

[8] L. Sha, R. Rajkumar, and J. Lehoczky, "Priority
Inheritance protocol: An Approach to Real-Time
Synchronization", [EEE Transaction on Computers,
VOL 39, No.9, pp.1175-1185 September 1990.

[9] Richard Monson-Haefel, Java Message Service, O'reilly
Press, 2000.

{10] Ragunathan Rajkumar, Mike Gagliardri, and Lui Sha,
"The Real-Time Publisher/Subscriber Inter Process
Communication Model for Distributed Real-Time
System: Design and Implementation”, First [EEE
Real-Time Technology and Applications Symposium,

1995.
[11] Sun Microsystems, RPC: Remote Procedure Call
Protocol Specification Version 2,

http:/twww fags.org/rfes/rfc1831. html, 1993.

[12] William Grosso, Java RMI, O'reilly Press, 2001

[13] Tim Lindholm, Frank Yellin, The Java Virtual
Machine Specification, http:/jjava.sun.com/docs/, 1996.

[14] Microsoft Corp., Developing Microsoft Visio Solutions,
Microsoft Press, 2001.

- 2414-

