A Disposable BioChip for DNA Sample Preparation

Euisik Yoon

Dept. of Electrical Engineering and Computer Science KAIST

Microsystem-on-a-Chip Application Using 3-D Microstructures

- Disposable DNA purification chip
- Micro Mixer
- Micro Pump
- Micro Power Source

Integrated Microsystems Lab.

KAIST

DNA Sample Preparation for Genetic Analysis

Process steps of DNA testing

Test material

Pure DNA

High concentration DNA

- Sample preparation step
 - □ Complex, labor intensive, time consuming
 - Most difficult step to be automated in DNA testing

Integrated Microsystems Lab.

DNA Purification Chip Using Photosensitive Glass

- Simple and inexpensive process
- DNA will bind to exposed SiO₂ surface
- Micro Pillar Structure : Increase the binding surface area

Integrated Microsystems Lab.

Photosensitive Glass Process for 3-D Microstructures (a) UV exposure 300nm Glass (b) Crystallization 500~600°C (c) Etch 10%HF Integrated Microsystems Lab.

Characteristics of Fabricated DNA Purification Chip

High concentration input test: 600ng/200ul

Low concentration input test (with PCR): 100copies/200uL

Integrated Microsystems Lab.

KAIST

Characteristics of Fabricated DNA Purification Chip

	High concentration	Low concentration	
Starting DNA	4789bp, plasmid circular dsDNA		
DNA/Salt Mixture	200μL		
DNA concentration	600ng/ μL	100copies/200 μL	
Guanidine HCl concentration	4.8M	4.8M	
Wash solution	400 μL 80% Ethanol		
Elution solution	40 μL D.I. Water		
PCR	No	30cycles	

- Binding Capacity: 15ng/cm²
- Minimum Extractable Input Concentration : 100copies/200 μL (5pg/200 μL)

Integrated Microsystems Lab.

Micro Mixer

- Mixing is necessary in the microfluidic systems
 - Biochemistry analysis, drug delivery, sequencing or synthesis of nucleic acids
- Small dimension
 - **Low Reynolds number laminar flow**
 - ² No turbulence
 - Mixing dominated by diffusion
- Active mixer
- Passive mixer

Integrated Microsystems Lab.

KAIST

Passive Micro Mixer with PDMS

■ Schematic of Micro Mixer

- Easy to fabricate
- Low cost
- Enhancement of mixing performance by increasing of diffusion area
- Easy to integrate with micro fluidic system

Integrated Microsystems Lab.

PDMS Microstructures Fabrication Process 1. SU-8 Mold Petterning 3. O₂ Plasma Treatment SU-8 mold Substrate PDMS 4. Bonding Silicone tube PDMS Substrate PDMS Substrate PDMS Substrate PDMS Substrate

Micropump

Critical component that exerts a pressure on liquids to transport reagents or control liquids

Integrated Microsystems Lab.

KAIST

Micro Actuators

Actuation	Pressure	Displacement	Response	Operation	Power
Туре			time	voltage	consumption
Piezoelectric		very small	fast	very large	small
(Stack type)	very large				
Electrostatic	small	very small	very fast	very large	small
Thermo -		medium	medium	medium	large
pneumatic	large				
Electro -	small	loves	foot	11	
magnetic	Sman	large	fast	small	large
Bimetallic	large	small	medium	large	medium
SMA	large	-	-	•	large

Integrated Microsystems Lab.

Micro Power Source

■ Candidates for micro power source

Device	Power Density (MW/m³)		
Micro-lithium battery	0.4		
Micro solar cell	1		
Micro-electric motors	1.7		
Micro reactors	20		
Micro-magnetic motors	200		
<u>Micro-combustors</u>	2000		

- High power density
 - light weight
 - small size
- Long operation time
- => Micro Combustion

Engine is one of the prospective solutions due to its high power density

Integrated Microsystems Lab.

KAIST

Scaling of Micro-combustor

■ Combustion Power vs. Heat Loss

- Material Selection of Engine Body
 - □ Thermal insulator, Electrical isolator → Glass
- Scaling Combustor Dimension
 - Larger than critical quenching distance

Integrated Microsystems Lab.

Conclusions

- Simple and low cost technologies for 3-D microstructures
 - MESD & electroplating
 - **□ PDMS**
 - Photosensitive glass
- Demonstration of several components for Lab-ona-chip
 - Disposable DNA purification chip
 - **Passive micromixer with PDMS**
 - Micropump driven by surface tension variation
 - Micro combustion engine

Integrated Microsystems Lab.