Microwave Surface Resistance of MgB₂ Films Prepared on *c*-cut Sapphire and MgO J. H. Lee*, a, Jung Hun Leea, J. Lima, J. S. Ryua, H. N. Leeb, H. G. Kimb, S. H. Moonb, B. Ohb and Sang Young Leea Department of Physics, Konkuk University, Seoul 143-701, Korea bLG Electronics Institute of Technology, Seoul 137-724, Korea The microwave surface resistance R_S of MgB₂ films with the zero-resistance temperature of 37 ~ 39 K was measured at 8.0-8.5 GHz. The MgB₂ films were prepared by deposition of boron films on c-cut sapphire and MgO, respectively, followed by annealing in a vaporized magnesium environment. When the surface of MgB₂ films was ion-milled by ~ 55 nm, the R_S of the ion-milled MgB₂ appeared significantly reduced compared to that of the as-grown MgB₂ films, with the observed R_S of ~ 0.8 m Ω at 24 K for an ion-milled MgB₂ film on c-cut sapphire being 1/15 of the value for the corresponding as-grown MgB₂ film. Reduction in the R_S after the surface ion-milling was also observed for MgB₂ films on MgO, with the observed R_S of ~ 2.1 m Ω of the ion-milled MgB₂ on MgO at 24 K being about 1/2 of the value for the corresponding as-grown MgB₂ films. Our results show that effects of the Mg-rich metallic surface layer of MgB₂ films on the R_S were significant regardless of the kinds of substrate used for deposition of MgB₂ films, with the observed high R_S of as-grown MgB₂ films attributed to the existence of the Mg-rich metallic layer at the surfaces of the as-grown MgB₂ films. Dependence of the R_S on deposition conditions is also discussed. keywords: Microwave surface resistance, MgB2, Ion-milling