인산가용화균 Penicillium sp. PS-113의 액상비료 제제화

<u>태언희</u>, 이태근*, 강선철 대구대학교 공과대학 생물공학과, (주)홁살림* 전화: 053-850-6553, Fax: 053-850-6559

Abstract

A fungus, *Penicillium* sp. PS-113, with high phosphate-solubilizing activities was isolated from soil and tested the viability in PDA medium supplemented with various concentrations of Trio in order to develop a dispersing agent for liquid formulation. Moreover, the number of *Penicillium* sp. PS-113 conidia, stored at 4°C and 25°C with Trio(0.1%) and various concentrations of additives(Cu¹¹, Mo¹¹, bio-ceramic, Tween 80, PEG 200, diatomite, SDS), was counted on PDA at the intervals of 2 weeks. As a result, the liquid formulation containing 0.1%(v/v) Trio was remarkably improved in dispersing ability and the viability of the conidia, and each of the supplements (0.01% Mo¹¹, 0.5% bio-ceramic, 1.0% Tween 80, 1.0% PEG 200) was similar to the 0.1% Trio.

서론

미생물을 이용한 biofertilizer의 개발은 인도 등에서는 일부 실용화되어 사용되고 있지만 국내에서는 균주선발 및 배양특성 조사, 발효공정 개발, 포장시험 등에 관한 폭넓은 연구의 부족으로 아직 초보적인 단계에 머무르고 있다. 본 연구에서는 인산가용화능이 우수한 Penicillium sp. PS-113의 포자를 액상비료 제제화 시 멸균증류수에서 포자의 분산력을 개선시킴과 동시에 균의 활성 유지를 위한 방법을 개발하고자 한다.

제료 및 방법

1. 사용균주 및 배지

공시균주는 본 연구실에서 인산가용화능이 우수한 균주를 탐색하여 토양으로부터 선발 및 동정한 *Penicillium* sp. PS-113균주를 사용하였고, 생존포자수 측정배지로는 PDA 배지를 사용하였다.

2. Trio의 농도에 따른 분산력 개선과 첨가제에 따른 포자의 생활력에 미치는 영향 0~1.0% 범위의 다양한 농도의 Trio를 첨가하여 멸균 증류수에서의 포자의 분산력을 알아보고, Trio(0.1%)와 각종 첨가제 (Cu¹¹, Mo¹¹, bio-ceramic, Tween 80, PEG 200, diatomite, SDS)를 혼합 첨가하여 4℃과 25℃에서 보관한 후 2주, 4주, 2개월, 4개월 경과시의 생존포자수를 측정하였다

결과 및 고찰

Penicillium sp. PS-113 포자의 액상비료 제제화 시 분산력을 개선함과 동시에 균의 장기보존을 위해 다양한 농도의 Trio 및 Trio에 각종 첨가제 (Cu'', Mo'', bio-ceramic, Tween 80, PEG 200, diatomite, SDS)를 혼합 첨가한 결과, Trio 농도 0.1%(v/v)에서 포자의 분산

력이 가장 좋았으며, 4℃에서 4개월 저장시 Trio 힘가구의 포자생존률은 약 70%로서 무침 가구보다 약 2배 증가하였다.

요약

인산가용화균 Penicillium sp. PS-113의 포자를 액상비료로 제제화 할 때, 분산력 개선 및 균의 장기보존을 위해 다양한 농도의 Trio와 Trio에 각종 첨가제를 첨가하여 4℃와 25℃에서 보관한 후 2주, 4주, 2개월, 4개월 간격으로 시료를 채취하여 PDA 평판베지에서의 균수를 측정하였다. 그 결과에 의하면 0.1% Trio(v/v)에서 포자의 분산력과 생존률이 가장 좋았다.

참고문헌

- 1. Agasimani, C., A. Mudlagiriyappa, and M. N. Sreenivasa. (1994) Response of groundunt to phosphate solubilizing microorganisms. *Groundnut News* 6: 5.
- Varsha, N., T. Jugnu, and H. H. Patel (1995), Mineral Phosphate Solubilization by Aspergillus awamori, Ind. J. Exp. Bio., 33, 91-93.

Table 1. Effect of Trio, an additive, on the liquid formulation of *Penicillium* sp. PS-113 conidia was tested. The viability of conidia was counted after storing it at 4° C.

	storage	No. of conidia							
additive	time	0	1 day	2 weeks	4 weeks	2 months	4 months		
Trio	0%	2.3×10 ¹⁴	5.6×10 ¹³	4.2×10 ¹¹	6.0×10 ¹⁰	2.8×10 ⁹	1.9×10^{9}		
	0.001%	1.5×10 ¹⁻¹	6.8×10^{13}	5.2×10 ¹¹	7.0×10^{10}	5.2×10 ⁹	4.0×10^{9}		
	0.01%	2.4×10 ¹⁴	1.9×10 ¹⁴	2.0×10^{12}	1.3×10 ¹¹	1.2×10 ¹⁰	3.6×10^{9}		
	0.1%	2.0×10 ¹⁴	4.8×10 ^{1.5}	1.5×10 ¹¹	1.8×10 ¹¹	1.0×10 ¹⁰	3.8×10 ⁹		
	1.0%	8.0×10 ^{1.5}	1.4×10 ^{1.3}	5.0 × 10 ¹⁰	2.0×10 ¹⁰	6.0×10 ⁹	5.3×10^9		

Table 2. Effect of Trio and other additives on the liquid formulation of *Penicillium* sp. PS-113 conidia was tested. The viability of conidia was counted after storing it at 4° C.

storage	No. of conidia						
additive	0	1 day	2 weeks	4 weeks	2 months	4 months	
Trio (0.1%), control	4.2×10^{13}	$1.2 \times 10^{1.3}$	1.7×10 ¹¹	2.6×10^{9}	5.7×10′	2.5×10'	
Trio (0.1%) + Cu (1.0%)	4.6×10 ^{1.3}	1.0×10 ¹⁰	1.0×10^8	0	0	0	
Trio (0.1%) + Mo (0.01%)	4.6×101.3	1.0×10 ^{1.3}	1.2×10 ¹¹	2.1×10^{9}	4.2×10'	2.1 × 10'	
Trio (0.1%) + bioceramic (0.5%)	$4.9 \times 10^{1.3}$	2.5×10^{13}	1.8×10 ¹¹	1.1×10^{9}	5.1×10′	$2.1 \times 10^{\prime}$	
Trio (0.1%) + Tween 80 (1.0%)	4.6×10 ^{t.3}	$1.1 \times 10^{1.5}$	8.0 × 10 ¹¹	3.6×10^{9}	5.8×10′	2.6×10'	
Trio (0.1%) + PEG 200 (1.0%)	3.8×10 ^{1.5}	5.0×10^{12}	1.6×10 ¹¹	2.6×10°	9.4×10′	1.4×10′	
Trio (0.1%) + diatomite (1.0%)	$4.4 \times 10^{1.3}$	5.0×10^{12}	1.0×10 ¹¹	4.0×10^8	9.0×10 ⁶	6.0×10°	
Trio (0.1%) + SDS (0.1%)	4.1 × 10 ^{1.3}	5.0 × 10 ¹²	3.0×10 ¹⁰	3.0×10^8	2.0×10 th	3.0×10 ⁻¹	