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1. INTRODUCTION

Recently, the decline of water quality in harbors or
marinas has become a serious problem. Therefore,
the surface-piercing vertical barriers have been used
or considered for the purposes of reducing wave
heights in the harbor, and facilitating exchange of
water inside and outside of the harbor. Permeable
barriers have the advantage of reducing wave
reflection on the upwave side of the barrier but in
order to also reduce wave transmission to an
acceptable level it is often necessary to use two or
more barriers.

The scattering of water waves even for a single
barrier has been well known for the mathematical
difficulties encountered within the framework of
linearized potential theory. Therefore, vertical
barrier performance for more than two barriers is
very difficult to be accomplished by theoretical
evaluations. In this paper, therefore, the wave/flow
fields under multiple barriers are numerically solved
by the mild-slope equation model which is
expanded by adding the additional terms for wave
scattering. Additional terms, which are given in
terms of reflection ratio, are added in the momentum
equation without inclusion of evanescent modes.
Thus the existing of barriers is recognized by that of
reflection ratios on the computational domain. In
predicting the reflection ratio, the eigenfunction
expansion method is used as the most accurate
routine.

2. AN IMPERMEABLE BARRIER

The type of a surface-piercing barrier has been
examined experimentally by Wiegel(1960) and
Jones et al. (1979) and theoretically by
Wiegel(1960), who presented an approximate
solution for the wave transmission based on the
power method, Ursell(1947), who gave an exact
formula for the wave transmission in deepwater,
Drimer et al. (1992), who presented a simplified
model to solve analytically the two-dimensional
linearized hydrodynamic problem of a pontoon type
floating breakwater, and Losada et al. (1992),
Abul-Azm (1993) and Kriebel and Bollmann (1996)
who developed numerical solutions based on the
method of eigenfunction expansion, while Liu and
Abbaspour, (1980) who used a boundary integral
equation method(BIEM). In this section, four
theoretical approaches above-mentioned except
BIEM method will be reviewed for a vertical barrier
as shown below.
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Fig. 1. Schematatic diagram of a vertical barrier

2.1 Theoretical Approaches

Power Transmission Theory (Wiegel, 1960)

A portion of the wave energy incident on the barrier
will be reflected as a reflected wave component and
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a portion will pass beneath the barrier and form a
transmitted wave component. As a first
approximation to determining the height of the
transmitted wave component, therefore, Wiegel
(1960) considered that all the progressive wave
energy being propagated at those levels below the
lower edge of the barrier is transmitted past the
barrier and results in a transmitted wave.

For the propagation of a series of monochromatic
waves of uniform amplitude, when a rigid vertical
barrier is partially immersed perpendicular to the
wave direction with a gap of “§” in between the

bottom of the barrier and the sea bed as shown in Fig.

2, the portion of wave height transmitted between
the sea bed and the bottom tip of the vertical barrier
for a wave of small amplitude is given by

|K,|=i=\/§ 6
H \B

where H,is the transmitted wave height and the ratio
H/H; is termed the coefficient of transmission l K, |,

and by the linear wave theory,

P, _sinh2k(h+ D)+2k( 4+ D) @)

P sinh 2 kh+ 2kh
where k is the wave number, A is the water depth,
and D is the bottom tip of the vertical barrier
measured negative downward from SWL. For an
ideal condition the coefficient of reflection |K]] is
given by ‘
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where A _is the reflected wave height.

Infinite Depth-Water (Ursell, 1947)

Concerning the performance of vertical barriers in
waves, many studies have been carried out since the
analytic method with eigenfunction expansion was
represented as the basic theory of the wave-structure
interaction. Most simple method for the vertical
barrier was presented by Ursell (1947) in deep water
condition. Ursell(1947) solved for the velocity field
everywhere in the case of a thin vertical barrier
immersed to a depth D beneath the surface of deep
water, in the presence of incident waves of angular
frequency o, and showed that modulus of the ratio
reflected to incident wave elevation could be
expressed in terms of modified Bessel functions as

l |= 7r11 (crzD/ g) 4
’ \/{7:2 (62D g)+ K2 (a* D/ g)}
k(D8 ©®)

\/{73112 (c2D/ g)+ Klz (c*D/ g)}

where 7, is the modified Bessel function of the first
kind of order 1, X is the modified Bessel function
of the second kind of order 1, and g is the
gravitational acceleration.

Simplified Approximate Approach (Drimer et al.
1992)

The scattering waves may be decomposed into
symmetric and anti-symmetric components; each
can be thought of as caused by two incident waves
one from the right and one from the left side of the
vertical barrier. The two waves have the same length
and amplitude and are phase symmetric scattering
waves, respectively. Using the orthonormality, we
can express the transmission and reflection
coefficients (Drime et al. 1992) as

Uik, =1- 6
K- IO:UZ K =1-K, (6)
iUyl k,+Y) =2 '
a=t &,
where '
U=[ fdz (n=012,.) (7)

£(2)(n=0,,.)isa complete set of orthonormal

function in the interval (_ h, 0) given by

V2 cosh [k (z+h)]

[+ K sinh® (k) | ®)

2 cos[k,, (z+ h)]

1/2 2

i(9=

(n=12,.)

(9=

[5-K'sin? (k,4)]

k, is the incident wave number which satisfies the

dispersion relation ;
K=k, tanh (k)

and g are the positive roots of the equation :
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K =k, tan(k,h)

Eigenfunction Expansion (Kriebel and Bollmann,
1996)

The method by eigenfunction expansion consists of
matching two similar eigenfunctions over the depth
across the breakwater gap. The methodology
follows that developed by Dalrymple and Martin

(1990) in finding the reflection coefficient fora long

linear array of offshore breakwater with horizontal
gaps between the array under short and long water
waves. Such a solution has been given by Losada et
al. (1992), Abul-Azm (1993) and Kriebel and
Bollmann (1996).

At large distances from the breakwater, ¢ must
satisfy a radiation condition, namely

x¥>io\ Ox

lim (3 mfk,,)(¢ ~¢;)=0 ®

where the incident potential ¢;is given by

4,=2Z,(2)e* (10)

where

Z,,(z): igH, cosh k,(4+ 2) (11)
20 coshkh

The eigenfuction expasion method involves solution
for the velocity potentials on the up-wave side (I)
and on the down-wave side (II) of the vertical
barrier(see Fig. 1). These up-wave and down-wave
potentials must then be appropriately matched at the
location of a vertical barrier. These potentials have a
spatial dependence as given by

0 =z (2) e + i Re™Z (2) x<0 (12)
=0

$0=Z,()e -3 RéZ, () x20  (13)
a=0

The depth-dependent variable 7 (2) in Egs. (12)

and (13) is defined as

Z,(2)= igH; cosh k. (h+ 2) (14)
i 20 coshkh

where there is then an infinite set of imaginary roots
for n>1.
The solution for the complex amplitudes R, must

satisfy two additional physical requirements: (a) the
velocities must be zero on both sides of the barrier
in the upper region where —D< z<0, and (b) the
velocity potentials (or equivalently the dynamic
pressures) must match in the gap below the barrier
where —#< z<-D. If the matching conditions are
applied, two distinct equations for upper and lower
regions are obtained and both are then combined
into one mixed boundary condition. This combined
function is then multiplied by the orthogonal
function Z, and depth-integrated over the full depth
as done by Kriebel and Bollmann (1996). This
yields the following single matrix equation that can
be solved directly for the unknown amplitudes R,
without the need of a least-squares solution (Losada
et al., 1992; Abul-Azm,1993).

N
SR (kY +2k,X,,)= kY, m=01.N (15
=0

where the functions Yn,,; and X, were defined by
Losada et al. (1992) and are given by

Y.=[ Z(22.(2d _ (16)
X,= [ 2,(22.(2)dz (17)

Once the matrix equation Eq. (15) is solved for the
unknowns R, the transmission coefficient is
obtained from the first term, R, The reflection and
transmission coefficients for the progressive wave
modes are given by

K=IR| K=[I-R| (8)
2.2 Comparison and Discussion

The four theories for solving wave reflections
against a vertical barrier are now examined and
compared one another to determine the most
effective routine in predicting the reflection
coefficient.

The transmission and reflection coefficients for
D/F=0.2,0.5, and 0.8 are plotted as a function of kD
in Figs. 3 and 4, respectively. The eigenfuction
theory considered as the most accurate approach,
but Ursell’s method appeared to provide good
results only for small value of D/A, whereas Drimer
et al.’s simple method provides good results only for
large value of D/A. For conditions where the
evanescent modes are important, Drimer et al.’s
method has tendency to overestimate the wave
transmission. Wiegel’s theory yields worst
prediction; for near-shallow water overestimates
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wave transmission while for deeper water
underestimates it. The truncation parameter /V was
increased up to 150 modes for high penetration
condition. Fig. 5 shows the variations of computed

solutions according to N for D/=0.1. For low

penetration condition, however, N = 50 was
generally found to give satisfactory results.
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Fig 2. Transmission ratios for a surface-piercing
barrier in normally incident waves: (2) D/h=0.2, (b)
D/h=0.5, (c)D/h=0.8
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Fig 3. Reflection ratios for a surface-piercing barrier
in normally incident waves: (a) D/h=0.2, (b)
D/h=0.5, (c)D/h=0.8

3. APERMEABLE BARRIER

In using the eigenfunction expansion method, the
boundary condition along the permeable barrier
may be developed on the basis of the formulation of
Sollitt and Cross (1972) and as adopted by Yu
(1995) for a thin vertical barrier extending to the
seabed. This may be expressed along x=0 for
-D<z<0as

24, _ 262

2 _ 19
x - ox . G@2md) a2

. where G'= G/b, b is the barrier thickness and G

is a permeability parameter which is generally
complex. Eq. (19) corresponds to the fluid velocity
normal to the barrier being proportional to the
pressure difference across the barrier, with a
complex constant of proportionality so that the real
part of G corresponds to the resistance of the
barrier and the imaginary part of G corresponds to
the phase differences between the velocity and the
pressure because of inertial effects.

In the present study, the method of Sollitt and Cross
(1972) is followed and G expressed by:

G=—2- (20)
f—1is

where ¢ is the porosity of the barrier , £ is the

. friction coefficient and s is the inertia coefficient

given by

s=1+Cm(l;:-) @

In Eq. (21), (o, is the added mass coefficient.
This method is verified with experimental results
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of the reflection and transmission coefficients for
kiF1.5, D/FF1.0, £2.0 and C,=0.18. Fig. 5 shows
comparisons of between theory and experiments
with respect to & for a breakwater having a single
permeable wall as shown in Fig. 4. There is some
scatter in the experimental results but the overali
agreement satisfactory.

L
%
Hi Z
%
%
& / h
7
%
4
/777 777

Fig. 4. Breakwater with a single vertical permeable
wall
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Fig. 5. Comparison of the theoretical and
experimental  reflection and  transmission
coefficients for a breakwater with a single
permeable wall

4. MULTIPLE BARRIERS

4.1 Time-Dependent Mild-Slope Equation

Based on the equation proposed by Smith and
Sprinks (1975), the time-dependent mild-slope
equation for waves traveling in x axis can be written
as

n_2 92] 2 - (22)
57 ax[CC‘ax +[o?-#cC,Jn=0

where, 5 is the free surface displacement, o is the

angular frequency, k is the wave number, C'is the
phase speed, and G, is the group velocity. From the

dynamic free surface boundary, py/ox can be
expressed by velocity vector, u, defined at the free

surface as follows.

on__108(aP_ 1, (23)
ox  gotlox) g ot

in which ¢ implies the velocity potential at the free
surface. Therefore, Eq. (22) becomes

n, 0G| r _ (24)
a_f+ax{ T +[o ¥ce,n=0

The above equation is combined with Eq. (23)
expressed as

B g9 (25)

A set of differential equations (24) and (25) could
be applied in most effective engineering practice to
assess the wave conditions in existing or proposed
new harbours.

As done by Madsen and Larsen (1987) for the
regular waves, the above equations are reformulated
extracting the harmonic time variation with letting
n = Sexp(-ict) and u, =U_ exp(-ic)) -

2
IS 08,0 CCf(an _,'au,,) -¥ce,s=s,
of or ox| g \ ot d
(26)
U, _jou,+g%5-v, (27)
ot ox

where S; is the source term which generates the
incoming wave while the U; is the local scattering
term which is employed for wave scattering by a
vertical barrier. This approach speeds up the
solution considerably since one does not need to
resolve the wave period any longer. It is notable that
Egs. (26) and (27) allow the wave energy
propagating with a group velocity differently from
Madsen and Larsen (1987)’s wave model.

The source term S; is given in terms of the
internal wave condition .S; on the grid size of Ax:

8, =2iC,S, L (28)
Ax

where S; is the height function of internal waves
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given as
s:%exp(ua) 29)

where H; is the wave height.

The local wave scattering term, Us, is given in
terms of the local wave flux, U, on the grid size of
Ax similarly as the source term (impermeable
barrier):

U, =2t _cu (30)
1-y*  Ax
where s the reflection coefficient. For dissipative
waves(permeable barrier),
U, =2i- - cuL 31)
1~y Ax
4.2 Numerical Modeling

The numerical formulation for the mild-slope
equation given here is now given for the
completeness of the treatment. The governing
equations (26) and (27) are solved by the implicit
finite difference schemes using the tridiagonal
algorithm. Both flux variables U; and Uy, at
boundary sides are given in terms of S posed at the
center of the grid according to the boundary
conditions:

I-y 1-y 36
U,=—LCFS, Uy, =—LCES (36)
1 1+7 X /5; N+l I+}’ x*r“N
where

_ ik, +4/Ax _ ik +4/Ax (37)
ik, ~4/Ax" T —ik,+4/Ax

Fig. 6 shows the performance of wave reflecting
for given reflection coefficients. For a vertical
barrier posed at x=0, the spatial variations of
reflective and transmissive waves are shown in Fig.
7 and the corresponding perspective views are
shown in Fig. 8. Decomposition into reflection and
transmission components was performed by
Lee(1998)’s approach.
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Fig. 6. Performance test for wave reflecting from a
vertical barrier
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Fig. 7. Reflective and transmissive wave
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- Transmissive component
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For the breakwater with double vertical
permeable walls as shown in Fig. 9, the calculated
reflection and transmission coefficients are

compared with Hagiwara (1984)’s experimental
data in Fig. 10. Although the calculated reflection
coefficients are underestimated in general, they
show better agreement with experiments than
Hagiwara (1984)’s theoretical results (see Fig. 11).
In a similar approach, Isaacson et al. (1999)
obtained theoretical results closely fit with
Hagiwara (1984)’s ones. Therefore, the present
method provides possibility of practical approach
although we can’t say the better results always prove
the more accurate method.
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Fig. 9. Breakwater with double vertical permeable
walls
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Fig. 11. Hagiwara (1984)’s theoretical results
5. CONCLUSION

The modified mild-slope equation has been
derived as a governing equation for predicting
waves in a harbour protected with a vertical
impermeable or permeable barrier. For the regular
waves, the modified mild-slope equations were
reformulated extracting the harmonic time variation.
This approach yields much higher computational
efficiency as compared to conventional approaches
where one does not need to resolve the wave period
any longer. The major conclusions are listed below.

1) The representative two-dimensional problems
involving the scattering of water waves by thin
vertical barriers were examined and compared each
other to determine the most effective routine in
predicting the reflection coefficient. As a result, the
eigenfunction expansion method by Abul-Azm
(1993) was considered to yield the most accurate
solutions.

2) In order to provide an extremely simple method,
the traditional mild-slope equation has been
modified by adding additional terms without
inclusion of evanescent modes. Differently from the
source term, the local scattering term was added in
the other equation.

3) When applied to multiple permeable barriers, the
present numerical results are in better agreement
than Hagiwara (1984)’s and Isaacson et al. (1999)’s
theoretical resuits when compared with Hagiwara
(1984)’s experimental data.



ACKNOWLEDGMENTS

Funding for this research from Korea Ocean
Research and Development Institute is gratefully
acknowledged.

REFERENCES

Abul-Azm RG., 1993. Water diffraction through
submerged breakwaters. J. Waterway, Port,
Coastal and Ocean Eng. : 119(6), 587-605.

Berkhoff, J.C.W., 1972. Computation of combined
refraction diffraction. Proc. 13" Conf Coastal
Eng., pp-471-490.

Copeland, G.J.M., 1985. A practical alternative to
the mild slope wave equation. Costal Engrg., 9,
125-149.

Drimer et al., 1992. A simplified analytical model

~ for a floating breakwater in water of finite depth.
Applied Ocean Res., 14, 33-41.

Hagiwara, K., 1984. Analysis of upright structure
for wave dissipation using integral equation.
ICCE, 2810-2426.

Isaacson, M., Baldwin, J., Premasiri, S., Yang, G.,
1999. Wave interactions with double slotted
bariers. Applied Ocean Res., 21,81-91.

Jones, D.B., Lee, J-J and Raichlen, F., 1979. A
transportable breakwater for near shore
applications. FProc. Specialty Conférence Civil
Engineering in Ocean IV, 433-456.

Kriebel, D.L. and Bollmann, C.A., 1996. Wave
Transmission past vertical wave barriers. ICCE,
2470-2483.

Lee, J.L., 1998. Decomposition of reflecting waves
by hyperbolic model. J Korean Society of
Coastal and Ocean Engneers, 10(4), 197-203.

Liu, P.L.F. and Abbaspour, M., 1982. Wave
scattering by a rigid thin barrier. J. Waterway,
Port, Coastal and Ocean Div., ASCE, 108,
479-91.

Losada, I, Losada, M., and Roldan, A., 1992.
Propagation of oblique incident waves past rigid
vertical thin barrier. Applied Ocean Res., 14,
191-199.

Madsen, P.A., and Larsen, J., 1987. An efficient
finite-difference approach to the mild-slope
equation. Coastal Engrg, 11, 329-351.

Smith, R., and Sprinks, T., 1975. Scattering of
surface waves by a conical island. J. Fluid Mech.,
72, 373-384.

Sollit, CK., and Cross, RH, 1972. Wave
Transmission through permeable breakwater.
Proc. 13* Int. Conf On Coastal Engr,
1827-1846.

Ursell, F., 1947. The effect of a fixed vertical barrier
on surface waves in deep water. Proc. Camb.
Phil: Soc. 43, 374. 25(8), 621-637.

Wiegel, R. L., 1960. Transmission of waves past a
rigid vertical barrier. J. Waterways and Harbours
Div., ASCE WW1, 1-12.

-49-



