HIGH SPEED CCD PHOTOMETRY OF FLARE STARS Sun-Youp Park¹, Yong-Ik Byun² ¹Department of Astronomy, Yonsei University, Seoul, 120-749, Korea ²Department of Astronomy, Yonsei University, Seoul, 120-749, Korea Previously flare stars used to be observed by fast two channel photoelectric photometry. We started an observing program to monitor flare stars using normal CCD camera via a method called ''trailed mode photometry''. For this program, we developed a fully automated trail photometry software. ## BV CCD Photometry of RR Lyrae Stars in the Globular Cluster ω Centauri Jong-Myung Joo¹, Soo-Chang Rey², Young-Wook Lee¹, & Alistair Walker³ ¹Center for Space Astrophysics and Department of Astronomy, Yonsei University ²Center for Space Astrophysics, Yonsei University ³CTIO, Chile We present the preliminary results of BV CCD photometry of RR Lyrae stars in the globular cluster ω Centauri, obtained from the high-precision wide-field CCD photometry. The B, V light curves of most RR Lyrae stars (~130 stars) in ω Cen have been constructed and the fundamental parameters of light curve of each RR Lyrae stars were obtained. We derived the Mv(RR)-[Fe/H] and period shift-[Fe/H] relations from these BV data and the previous Caby metallicity data. We confirm that RR Lyrae stars in ω Cen show non-monotonic characteristic which is consistent with the results of synthetic HB model.