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Abstract

We consider a stable tandem network which consists of two M/M/1
queues. The optimal changes of measure to run the fast simulation for
the probability of rare events such as buffer overflows are obtained.

1 Introduction

In a queueing network with finite buffers, a certain proportion of packets are

lost due to buffer overflows. While the probability that the buffer overflows

occur can be calculated analytically for a single M/M/1 queue(Parekh and

Walrand(1989)), the first step equation for a network of queues cannot be

solved analytically because the order of the characteristic equation becomes

large. Therefore, simulation is often used to find the probability of the buffer

overflow or the expected recurrence time of buffer overflows. For a stable

system, the events of reaching a large backlog are very infrequent. Hence,

direct simulations are very slow and take up a lot of computer time. Be-

sides, there is also the difficulty of implementing a pseudo-random generator

function effectively during very long simulation. However, using the idea of

importance sampling, the probability of this rare event can be found by fast

simulation without incurring the large cost involved in direct simulation.

The idea in importance sampling is as follows. Suppose we are interested

in certain (rare) events occurring in a system S that we can simulate on a

computer. Then instead of simulating S we simulate a second system S̄,
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which has the property that events in S and S̄ correspond in some way.

In particular, to the rare events A in S correspond events Ā in S̄. The

correspondence is such that

1) the events Ā in S̄ are more frequent than the events A in S, and

2) the connection between S and S̄ allows one to infer P (A) if one knows

P̄ (Ā)(P̄ is the probability measure in system S̄.)

A major issue in the use of importance sampling is how one should con-

struct S̄ from S. To an extent, the problems of obtaining the probability of

rare events or the mean time between occurrences of rare events are being

replaced by another difficult problem of obtaining the optimal changes of

measure. In this paper, the system S will be a network of queues. The

system S̄ will be a network of queues also, with the same structure as S,

but with various parameters such as arrival and service rates that will be

different from the corresponding quantities in S.

Asmussen(1982) showed that the asymptotically optimal change of mea-

sure for estimating the probability of large build-ups in an M/M/1 queue

corresponds to simulating an unstable M/M/1 queue with interchanging

arrival rate and service rate.

Based on a heuristic application of large deviations techniques, Parekh

and Walrand(1989) proposed importance sampling estimator for overflow

probabilities in queueing network. For tandem networks, their estimator in-

terchanges the arrival rate and the slowest service rate, thus generalizing the

M/M/1 estimator described above. They evaluated this estimator numeri-

cally and found that it generally works well. An optimization step required

in Parekh and Walrand(1989) was solved in Frater et al.(1991) for Jackson

networks and in Frater and Anderson(1994) for tandem networks. However

they considered only the total backlog of the queueing network whose service

rates are different, that is, there is only one node which has the largest load.

Glasserman and Kou(1995) mentioned the importance sampling based on
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the above interchange rule tends to be less effective if the service rates are

close.

In this paper we find the optimal change of measure for one node’s

overflow in tandem network by using the h-transform in McDonald(1999)

and the time-reversed process in Anantharam et al.(1990). In section 2 we

describe the model and the h-transform method of McDonald(1999). The

optimal changes of measure due to the h-transform for one node’s overflow

are obtained in section 3 and 4.

2 Model

We consider two M/M/1 queues in tandem which have respective service

rates µ1 and µ2. We assume, for stability, that the arrival rate λ satisfies

λ < µ1 and λ < µ2. For simplicity, we will refer to such a system by a

(λ, µ1, µ2)-network. Fig. 1 depicts a (λ, µ1, µ2)-network.
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Fig. 1. A (λ, µ1, µ2)-network.

A (λ, µ1, µ2)-network can be described as a Markov jump process (N(t), t ≥
0) on S ≡ N2, where N is the non-negative integers. Let (x, y) ∈ S denote

the number of customers waiting or being served at each node. The jump

rates of this Makov jump process are shown in Fig. 2.
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Fig. 2. Jump rates for (λ, µ1, µ2)-network.
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The generator of L of N is given as an operator on a bounded function

g on S:

Lg(x, y) = λ(g(x + 1, y)− g(x, y))

+ µ1(x)(g(x− 1, y + 1)− g(x, y))

+ µ2(y)(g(x, y − 1)− g(x, y)), (x, y) ∈ S

where µ1(x) = µ1 if x > 0 and 0 otherwise and where µ2(y) is defined

analogously. The stationary distribution π of this jump process is given by

π(x, y) = (1− λ

µ1
)(

λ

µ1
)x(1− λ

µ2
)(

λ

µ2
)y (1)

under the condition that λ/µi < 1 i = 1, 2. The equation (1) implies that,

in the steady state at a fixed time, the queue sizes at the different nodes

are independent. Furthermore, the queue size at node i has the stationary

measure of a birth and death process with birth rate λ and death rate

µi, i = 1, 2.

The event rate of the (λ, µ1, µ2)-network is λ + µ1 + µ2. Without loss

of generality we assume λ + µ1 + µ2 = 1 (otherwise, we can rescale time)

so if we regard L as the discrete generator of a Markov chain W on S then

the (λ, µ1, µ2)-network is precisely the homogeneization of this chain. Con-

sequently π is also the stationary distribution of W . We assume the kernel

K is associated with the Markov chain W with the stationary probability

distribution π.

We are interested in the rare event when the one node overloads; that is

when the one coordinate of W exceeds a level `. For the moment, we relabel

the first coordinate on this coordinate. When the first coordinate overloads,

the other node may remain stable even though it is subject to higher load.

The coordinate corresponding to this super-stable node is renumbered to

r + 1 through r + m, r + m = 2. Unfortunately when one node overloads it

may drive the other node into overload. We assume this node corresponds

to coordinates 2 through r. Then for ~x = (x1, x2), x1 denotes the number

4



of customers of the chosen node to overload and x2 is that of the other node

which is super-stable or unstable.

We look for a harmonic function h(x1, x2) since in addition to twisting

the first component to become transient we must judiciously twist only the

other component which remains recurrent after twisting. Furthermore the

twist must make nodes 1 through r transient to plus infinity.

If β = {i1, i2, . . . , id}, we say ~x is on the boundary Sβ if xi = 0 for i ∈ β

but xi > 0 for i 6∈ β. Denote the interior of the orthant by int(S) if xi > 0

for all i. We decompose ~x ∈ S as

~x = (x̃, x̂) where x̃ ∈ Nr, x̂ ∈ Nm, r + m = 2.

Similarly we decompose W into components (W̃ , Ŵ ). To fine h we now

remove the boundaries ∆ := ∪r
k=1S{k} for the first r coordinates. Define

S∞ = Ir ×Nm, where I denotes the integers. Define int(S∞) = {~x ∈ S∞ :

xi > 0, i = r + 1, . . . , r + m}. If β = {i1, i2, . . . , id} ⊆ {r + 1, . . . , r + m}, we

say ~x ∈ S∞β if xi = 0 for i ∈ β.

On S∞ we assume transitions for a chain W∞ are given by a probability

transition kernel K∞ of the form,

K∞(~x, ~y) = K̂∞(x̂, ŷ)f(ỹ − x̃|x̂, ŷ)

where K̂∞(x̂, ŷ) is a transition kernel from Nm to Nm and f(·|x̂, ŷ) is a

probability mass function given each pair (x̂, ŷ). We assume the probability

transition kernel K(~x, ~y) of W agrees with K∞(~x, ~y) when ~x, ~y ∈ S∞ \ ∆.

Consequently the chain W behaves like W∞ outside the boundary ∆.

In McDonald(1999) it is shown that in great generality one can construct

the harmonic function for the kernel K∞ of the form h(~x) := ax1
1 ax2

2 · · · axr+m
r+m

with a2 = · · · = ar = 1. We assume the existence of h such that L∞ defined

below is a discrete generator for all ~x ∈ S∞. For a bounded function g in

S∞

L∞g(~x) :=
1

h(~x)
L∞ (h · g) (~x)
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=
∑

~y∈S∞
[g(~y)− g(~x)]

h(~y)
h(~x)

K∞(~x, ~y).

We call this the generator of the twisted network W∞ = (W̃∞, Ŵ∞) and

we denote the kernel by K∞. Hence

K∞(~x, ~y) =
h(~y)
h(~x)

K∞(~x, ~y). (2)

Of course, the solution h must produce a twisted process such that W̃∞

drifts to plus infinity while Ŵ∞ must be a stable Markov chain. If this fails

then we must try again by twisting another set of coordinates; that is we

must redefine the super stable nodes.

We perform the h-transform or twist of the nodes which causes the work-

load of the twisted network to overload. Thus K∞(~x, ~y) is the kernel corre-

sponding to the change of measure which induces the importance sampling

estimator.

3 Overloading the first node

Since the first node is overloaded we take ∆ = {(x, y);x = 0, y ∈ N} and

S∞ = I × N. To calculate the twist constants α and β for the harmonic

function h(x, y) = αxβy, remark that the constraint in the interior, int(S),

is

λα + µ1α
−1β + µ2β

−1 = 1.

The constraint on the x-axis, S{2}, is

λα + µ1α
−1β = λ + µ1.

Subtracting the later constraint from the first yields µ2β
−1 = µ2. Con-

sequently β = 1. Substituting into the first constraint gives α = µ1/λ. (Of

course the other solution is α = 1.) Therefore the harmonic function is
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h(x, y) = (µ1

λ )x and from the equation (2) the kernel K∞ is given by

K∞((x, y), (x + 1, y)) =
h(x + 1, y)

h(x, y)
K∞((x, y), (x + 1, y))

=
µ1

λ
· λ = µ1

K∞((x, y), (x− 1, y + 1)) =
h(x− 1, y + 1)

h(x, y)
K∞((x, y), (x− 1, y + 1))

=
λ

µ1
· µ1 = λ

K∞((x, y), (x, y − 1)) =
h(x, y − 1)

h(x, y)
K∞((x, y), (x, y − 1))

= 1 · µ2 = µ2

Hence the twisted process is the (µ1, λ, µ2)-network which is obtained

by interchanging the arrival rate λ and the service rate µ1 of the first node.

Notice that the first node of the (µ1, λ, µ2)-network has the load µ1/λ, larger

than 1, which implies that this node overloads. On the other hand the second

node remains stable since its load λ/µ2 is smaller than 1.

4 Overloading the second node

4.1 For the case of µ2 < µ1

In this case we consider ∆ = {(x, y);x ∈ N, y = 0} and S∞ = N × I. As

before the constraint in the interior is

λα + µ1α
−1β + µ2β

−1 = 1.

The constraint on the y-axis, S{1}, is

λα + µ2β
−1 = λ + µ2.

The solutions of the above equations are α = β = µ2/λ, so that the harmonic

function h(x, y) is given by h(x, y) = (µ2/λ)x+y. Therefore we have the

kernel K∞ as followings;

K∞((x, y), (x + 1, y)) =
h(x + 1, y)

h(x, y)
K∞((x, y), (x + 1, y))
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=
µ2

λ
· λ = µ2

K∞((x, y), (x− 1, y + 1)) =
h(x− 1, y + 1)

h(x, y)
K∞((x, y), (x− 1, y + 1))

= (
µ2

λ
)−1 µ2

λ
· µ1 = µ1

K∞((x, y), (x, y − 1)) =
h(x, y − 1)

h(x, y)
K∞((x, y), (x, y − 1))

= (
µ2

λ
)−1 · µ2 = λ (3)

If µ2 < µ1, then the twisted process (µ2, µ1, λ)-network has the over-

loaded second node and the stable first node. Hence the harmonic function

h(x, y) = (µ2/λ)x+y is what we look for and the transition probabilities in

equation (3) is the optimal changes of measure for fast simulation.

However, if µ2 > µ1, then the first node of the twisted process also

overloads. It follows that that we have to seek another harmonic function.

Since the first node as well as the second node overload, at this time we

remove both the x-axis and the y-axis, i.e. we consider ∆ = S{1} ∪S{2} and

S∞ = I2. Then the harmonic function is of the form h(x, y) = 1xβy. In

this case we have only one constraint in the interior such that

λ + µ1β + µ2β
−1 = 1

which implies β = µ2/µ1. Thus the harmonic function is given by h(x, y) =

(µ2/µ1)y so that the twisted process is the (λ, µ2, µ1)-network. But at this

time the first node of the (λ, µ2, µ1)-network is super-stable. It means that

we can’t find the harmonic function by interchanging the parameters. To

solve this problem we use the reversed process in the next subsection 4.2.

4.2 For the case of µ2 > µ1

Anantharam et al.(1990) showed that given a rare queue length vector has

occurred, the process got there by following in reverse direction the path

by which the reversed network empties from the rare state. Shwartz and

Weiss(1993) basically show that the large-deviation paths for which the rare
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event occurs are identical to the time-reversal paths, provided the jump rates

are constant in the interior of the state space. By using these results we can

get the harmonic functions which imply the optimal changes of measure.

In the reversed network of the (λ, µ1, µ2)-network, arrivals occur at rate

λ to the second node, and jobs flow from the second node to the first node

and then exit the network. Therefore the reversed network of (λ, µ1, µ2)-

network is the (λ, µ2, µ1)-network in the reversed direction. Its jump rates

are depicted in Fig. 3. Since µ2 > µ1 > λ the time-reversal path starting

at the rate state y = ` goes with the slope λ−µ2

µ2−µ1
until the x-axis is reached.

On the x-axis the path directs to the empty state because µ1 > λ. This

time-reversal path is pictured in Fig. 3.
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Fig. 3. The path and jump rates of the time-reversed network
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Interpreting this path for the forward-time process implied that buildup

occurs in two phases. The first phase corresponds to starting at the origin

(0,0) and building up the first node until the level µ2−µ1

µ2−λ `. Then, in phase 2

when both nodes are non-empty, the system is run to get y = `. We can now

find two harmonic functions and twisted processes to produce the phase 1

and 2, respectively.

(i) the phase 1

To reach x = µ2−µ1

µ2−λ ` firstly, we remove the y-axis. The constraint in
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the interior is given by

λα + µ1α
−1β + µ2β

−1 = 1.

The constraint on the x-axis, S{2}, is

λα + µ1α
−1β = λ + µ1.

It follows that the harmonic function is of the form h(x, y) = (µ1

λ )x

which is the same as that in the section 3. Hence the twisted process

is the (µ1, λ, µ2)-network.

(ii) the phase 2

In order to move along the path with the slope λ−µ2

µ2−µ1
from x = µ2−µ1

µ2−λ `

to y = ` the harmonic function h(x, y) should be

h(x, y) = (
µ1

λ
)x(

µ2

λ
)y.

and the kernel K∞ is given by

K∞((x, y), (x + 1, y)) =
h(x + 1, y)

h(x, y)
K∞((x, y), (x + 1, y))

=
µ1

λ
· λ = µ1

K∞((x, y), (x− 1, y + 1)) =
h(x− 1, y + 1)

h(x, y)
K∞((x, y), (x− 1, y + 1))

= (
µ1

λ
)−1 µ2

λ
· µ1 = µ2

K∞((x, y), (x, y − 1)) =
h(x, y − 1)

h(x, y)
K∞((x, y), (x, y − 1))

= (
µ2

λ
)−1 · µ2 = λ

so that the twisted process is the (µ1, µ2, λ)-network.
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