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1. Introduction

An analysis of the state—transition behavior of
group cellular automata(abbreviately, CA) was
studied by many researchers([1], [5], [7], [9],
[11]). The characteristic matrix of group CA is
nonsingular. But the characteristic matrix of
nongroup CA is singular. Although the study of
nonsingular  linear machines has  received
considerable attention from researchers, the study
of the of with

characteristic  matrix received due

class machines singular

has not
attention. However some properties of nonsingular
CA been employed in several
applications([6], [8], [10D). this paper,
present a detailed analysis of the behavior of
complemented CA derived from a linear CA by

replacing the XORs with XNORs at some (or all)

have

In we
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of the cells. Also, we give the specific features
displayed in the state—transition behavior of the
complemented MACA Cc’

inversion of the next-state logic of some (or all)

resulting  from

of the cells of multiple-attractor CA(abbreviately,
MACA) C . We call
to C . Especially we investigate the behavior of

C’ the CA corresponding

the complemented MACA which the complement
vector F is taken as a nonzero state in the 0
-tree of a linear MACA.

2. Linear Nongroup CA

Definiton 2.1[3].
state-transition diagram of a nongroup CA are

A state with a self-loop in the

referred to as an aftractor.
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The tree rooted at a cyclic state « is called

the a -tree.

Definiton 2.2[3]. The wnongroup CA for which
the state-transition diagram consists of a set of
disjoint components forming (inverted) tree-like
structures rooted at attractors are referred to as
multiple-attractor CA( MACA ).

Definiton 2.3[3]. The depth of a CA is defined
to be the minimum number of clock cycles to
reach the cyclic state from any nonreachable state
in the state-transition diagram of the CA.

Since the (-tree and another tree rooted at a
state very
the

nonzero cyclic have interesting
the of

necessary and very important.

relationships, study 0-tree is

Theorem 2.4[6].
a reachable state and the number of predecessors

The number of predecessors of

of the state 0 in a linear nongroup CA are equal.

Definiton 2.5[4]. Il <
depth) of the a -tree is a state lying on that tree

A state X at level

and it evolves to the state @ exactly after !

-cycles(/ is the smallest possible integer for

which T'X = a).

Definiton 2.6[4].
is an ¥ —predecessor (1 < r < 2"—1) of a

state X if T'Y = X, where T is the
characteristic matrix of the CA.

A state Y of an nm-cell CA

3. Behavior of complemented MACA derived
from a linear MACA

In this section, we present the behavior of
complemented MACA derived from a linear

MACA. Especially we investigate the behavior of
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complemented MACA from a MACA C which
the complement vector F is taken in the 0 -tree
as a nonzero state of C .

Theorem 3.1. T? denote times

Let b

application of the complemented CA operator T.
Then

T?[F(x)]
=[T’'®T' D DT*®TDII[F(x)]

Theorem 3.2. Let C be a linear MACA with
depth d and F be a state at the
1(0 < i< d) of the (-tree C

complement vector. Then T 'F is an attractor

level
in as a
in the complemented MACA C’ corresponding to
C.

Theorem 3.3. Suppose that there exists at least
one attractor in the complemented CA C’
corresponding to an #z-cell linear MACA C
with £ attractors. Then the number of attractors

in C'is the same as that in the original linear

one.

Theorem 3.4.
the complemented MACA C’ corresponding to a
linear MACA C, the of different

predecessors of any reachable state is the nonzero

In the state-transition diagram of

sum

1 ~predecessor of the state 0 of C .

Theorem 3.5. Let the dimension of the null
space of the state-transition matrix 7T of a
linear MACA C be 1. Le¢ F be a state at
level /(> 0) in the 0 -tree of C and C’ be
the corresponding complemented MACA. Then the
states of ( -tree of C are rearranged in the

state—transition diagram of C’ as the following:

(a) Al states at levels higher than [/ of C
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will remain unaltered.

(b) The states at level / of C get rearranged
at level up to (/—1) of C’.

(c) The states at levels up to (/—1) of C
get rearranged at level / of C’.

(d) F lies onlevel (I—1) of C".

4. Construction of a tree from a given ( -tree
in a linear MACA

In this section we construct an a@-tree of a
MACA C with two predecessor if we knew a
0 -basic path of the 0 -tree and a nonzero

attractor @ of C.

Theorem 4.1. [2]

attractor CA having two predecessor. If the states

Let C be a linear single

of the state-transition diagram of C are labeled
such that S, be the (&+1)-th state in the /

-th level of the 0 -tree in C , then the following
hold:

Sie = S0 &b g b:Si
b1—1 birg b

representation of %2 and the maximum value of

kis 2711,

where is the binary

Definiton 4.2. Let C be a linear MACA with
two predecessor and the depth of C be d. Let
B be a nonreachable state of the a-tree of C.
Then we call the path 8 — T8 — -
~-basic path of the a-tree of C .

- a a a

Theorem 4.3. Let

having two predecessor(depth =

C be a linear MACA
d) and T be
the characteristic matrix of C .

is a 0

C, then

If Ss0— Ss-1.0— "
of the

— S50 0

-basic path 0 -tree of
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(Sd.0®a) - (Sd_l,oe)d)
d (51,0@0’) > a

is a a -basic path of the a-tree of C .

—> ree

Theorem 4.4. Let C be a linear MACA having
If the states the

state-transition diagram of C are labeled such
that S7, (resp. S;,) be the (k+1)-th state

two  predecessor. of

in the !-th level of the a -tree(resp. ( -tree) in
C , then the following hold:

Sie= Sio©® g b;Si
bi-1 bz by
representation of %2 and the maximum value of
kis 27711,

where is the binary

(Algorithm for construction of a tree of a linear
MACA C)

Step 1. Find x such that (7@ I)x = (.

Step 2. Find the maximum value of % such that
2% | m(x) where m(x) is the minimal
polynomial of T.

Step 3. Find any ¥ such that T*y = ( and
T* ly+( where k is in Step 2.

Step 4. Find a (O -basic path ¥y — Ty

— 0.

Step 5. Construction of the (-tree using

Sia = Si0 @ le b;Sio
Step 6. Find all basic paths using

Sio=Si0Da

Step 7. Find all trees in C using

Sin= Sla.o @ gll b:Sio

—> vee
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4. Conclusion

In this paper, we present a detailed analysis of
the behavior of complemented CA derived from a
linear CA. Also, we give the specific features
displayed in the state-transition behavior of the
complemented MACA C’ of a linear MACA C.
Moreover we present an  algorithm  for
construction of a tree of C and investigate the
behavior of C’' which the complement vector is
in the Q-tree of C .

In future we will investigate the behavior of
the complemented MACA which the complement
vector taken as a nonzero state in any tree of

C.

taken as a nonzero state
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