2001 SI=SHENEIES £ StaUHEST HEA 1S

Mechanism for Efficient Use of Server’s

Resource on the Web

Yoon-Jung Rhee, Nam-Sup Park, Tai-Yoon Kim
Dept. of Computer Science & Engineering, Korea University

e-mail: genuine@netlab.korea.ac. kr

Abstract.

HTTP/1.1 standard reduces latencies

and overhead from closing and re-establishing

connections by supporting persistent connections as a default, which encourage muitiple
transfers of objects over one connection. HTTP/1.1, however, does not define explicitly
connection—closing time but specifies a certain fixed holding time model. This model may

induce wasting server’s resource when server maintains conn ection with the idle-state client
that requests no data for a certain time. This paper proposes the mechanism of a heuristic
connection management supported by the client-side under persistent HTTP, in addition to
HTTP/1.1's fixed holding time model on server-side. The client exploits the tag information
within transferred HTML page so that decides connection-closing time. As a result, the

mechanism allows server to use server’'s resource more efficiently without server’s efforts.

1. Introduction

TCP connections are established with a 3-way
handshake; and typically several additional round
trip times (RTT) are needed for TCP to achieve
appropriate transmission speed. Each connection
establishment induces user-perceived latency and
processing overhead. Opening a single connection
per request through
slow-start costs causes problems of performance
and latency. Thus,
proposed [34] and are new a default with the
HTTP/1.1 standard [5]. HTTP/1.1 reduces latencies
and overhead from closing and
connections by supporting persistent connections as
a default, which encourage multiple transfers of
objects over one connection.

HTTP/1.1,
terminate inactive persistent connections. HTTP/1.1

connection setup and

persistent connections were

re-establishing

however, must decide when to
specifies that connections should remain open until
explicitly closed, by either party. That is to say
HTTP/1.1 does not define explicitly when to
terminate TCP connection. Current implementation
of HTTP/11 wuses a certain fixed holding-time

model. This model may induce wasting server’s

resource. Current latency problems are caused by
not only networks problem but also
having limited This paper
proposes the mechanism of a heuristic connection

servers
overloads resource.
management on the client-side under persistent
HTTP, in addition to HTTP/1.1's fixed holding
time model on server-side. The client exploits the
tag information in transferred HTML page so that
decides connection-closing time.

In Section 2 we discuss the related works
involved in implementation of persistent connection
of HTTP/1.1. Section 3 contains our proposal of

connection management. We finish with a
conclusions and future works in Section 4.
2. Related Research.
2.1 Issues of Persistent Connection

HTTP/1.1 does not specify explicit
connection-closing time but provides only one

example for a policy, suggesting using a timeout
value beyond which an inactive connection should
be closed [5]. A connection kept open until the
next HTTP request reduces latency and TCP
connection.

507

2001 BIAMPHOIES FH SSYUH=FF H8A MiIS

An open TCP connection with an idle-state client
that requests no data consumes a servers resource,
a socket and buffer space memory. The minimum
size for a socket buffer must exceed the size of
the largest TCP packet and many implementations
pre-allocate buffers when establishing connections
establishment overhead. The number of available
BSD-based
operational systems have small default or maximum

sockets is also limited. Many

values for the number of simultaneously-open
connections (a typical value of 256) but newer
systems are shipped with higher maximum values.

Researches indicate that with current
implementations, large numbers of (even idle)
connections can have a detrimental impact on

servers throughput [6].

The issues of connection management is to strike
a good balance between benefit and cost of
maintaining open connections and to enforce some
quality of service and fairness issues.

2.2 Policies of Connection Management

The current version 1.3 of the Apache HTTP
[7) uses a fixed holding-time for all
connections (the default is set to 15 seconds), and

a limit on the maximum allowed number of

Server

requests per connection (at most 100). The Apache
implementation is a quick answer to the emerging
need for management. The wide
applicability and potential benefit of
connection-management makes it deserving further

connection
good

study.

Persistent connection management is performed
at the HTTP-application
implementations of Web servers use a holding-time

layer. Current
model rather than a typical caching model.

Using holding-times, a server sets a holding time
for connection when it is established or when a
request arrives. While the holding-time lasts, the
connection is available for transporting
incoming HTTP requests. The server
resets the holding-time when a new request arrives

and
servicing

and closes the connections when the holding-time
expires.

In a caching model there is a fixed limit on the
number of simultaneously-open connections.

Connections remains open cached until terminated

by «client or evicted to accommodate a new
connection request.

A holding-time policy is more efficient to deploy
due to architectural constraints whereas a
cache-replacement policy more naturally adapts to
varying server load.

Policies in the two models are closely related
when server load is predictable [1}; a holding-time
policy assigning the same value to all current
connections is analogous to the cache-replacement
policy LRU (evict the connection that was Least
Used). In fact,

assumptions the holding-time value can be adjusted

Recently under reasonable
through time as to emulate LRU under a fixed
cache size (and hence adapt to varying server load)
[1]. Heuristics to adjust the holding-time parameter
were recently proposed and evaluated on server
logs [2).

Heuristics to adjust the holding-time parameter
on server-side were recently proposed and
evaluated on server logs [1,2]. Demanding additional
processing for searching heuristic parameters for
every connection, if it was used on popular busy
servers, it may have an inferior effect on server
performance, so consequently deteriorate overall
latencies.

A problem in the effectiveness of
connection-management policies in both models is
the ability to distinguish connections that are more
likely to be active sooner. LRU exploits the strong
presence of reference locality but does not use
further distinguish between

connections.

information to

3. Connection Management on Client-side
3.1 Prototype of Proposal Mechanism

We define finishing time of transmission for
HTML page and all embedded file in
connection-closing time. For this definition to be
implemented, we present a mechanism, which both
client and server are able to close the TCP
connection.

We present simple algorithm for implementing

it as

prototype for our proposal. Used methods are
limited to GET message for file request and
CLOSE message for closing connection.

Client starts to establish connection with a

508

2001 StHEXCI8s £ St=¢H=2F H8H MIS

corresponding server by users ask, requesting GET
message for first HTML file to the server. After
receiving HTML document file, client parses tag
attribute information (e.g. img, applet, embed) in it
about embedded objects (e.g. image files, java
applet class files, files) request
corresponding object files to the server through
GET message. When the last embedded file
arrives, client sends CLOSE message to the server
current and terminates
connection. Server also closes connection when
server finishes the connection.

Server establishes socket and watches incoming
connection request. After Received connection
request, server establishes
client and sends repeatedly the file corresponding
requested file name. Server send CLOSE message
to current client for closing connection by the fixed
holding-time model that maintains connection for a
certain time and close the connection with the
client. After then, server releases resources, socket
and socket buffer memory having been assigned to
the client. Therefore, the next clients requesting
connections to the server are able to receive faster

sound and

for closing connection

connection with the

and more fairness service.

4. Experimental Results
To wvalidate the
prototype clients and servers. The clients and the

proposal we implemented
servers are implemented in the JAVA programming
language.

® Two different kinds of prototype clients:
- One for our client-side heuristic connection
management (CHCM) policy
- The other for holding-time policy and http/1.0
® Two kinds of prototype servers:
- One for http/1.0
- The other for holding-time policy and CHCM
policy

Each client was run on 300Mhz Pentium II PC
with 32MB of physical memory running the
windows35. Each server was run on two different
environments: is 600Mhz Pentium III with
32MB to make easy Web server environment, and
the others 386 PC with 8M bytes memory with to

one

make relatively very busy Web server, both of
them running Linux 2.0.32 with the kernel compiled
by increasing the socket listen queue to 256 and
increasing the MAXUSERs kernel parameter to 256.
All of the servers are implemented by thread-based
and event-driven feature and collect CPU and
physical memory statistics.

For the busy Web
assume a process-per-request model, with pools of
Our mechanism of the servers limits
usage of processes by
is achieved by imposing an

server environment, we

processes.
resource limiting
concurrency. This
upper bound on the number of processes in the
pool [19]. If all processes are busy, additional
incoming transactions of new clients are delayed
(in the OS) until a process becomes available. We
measured network retrieval times, not including the

time it took to render images on the display.

In our experiments, we measured the time
required to load a document and all of its
embedded images on the clients. We created

documents with different numbers of embedded
images, and with images of 45K bytes sizes. We
did these measurements for both easy server
environment and busy case accessed via a
1544Mbit/sec T1 link. Also, we measured the
HTTP throughput and server CPU utilization of the
servers.

In the busy server case, we measured CPU
Utilization percentages and latencies according as
clients requesting access to servers increase when
the size of processes pool was limited to 20 and
the number of embedded images in HTML
documents was 10.

Figure 1 shows the CPU Utilizations of
holding-time policy, CHCM policy and http/1.0.
CPU Utilization of CHCM became lower than that
of holding-time from 20 that the number of clients
is the same size of processes pool.

Figure 2 shows the load time of holding-time
policy, CHCM policy and http/1.0. Latency of
holding-time is slightly lower than CHCM up to 20
clients, but not noticeable. From 20 clients, Latency
of CHCM become lower than holding-time.

509

20014 BRI HeIEs N StaUWH=FF N8A M1S

—e— holding time A~

—=— CHCM
80 | —a—nttp/1.0

60 7

T

CPU Utitization (%)
&

0 5 10 15 20 25 30 35 40
Clients

Figure 1. CPU Utilizations for Busy Web server
environment according as clients

20000 - -
—e— holding tme ‘/‘

18000 - % CHCM /
—a—htp/1.0 -
16000 - 7
‘‘/»A/
T

14000

12000 -

Latency (millisec)

10000 -

Clients

Figure 2. Latencies for Busy Web server environment
according as clients

CHCM policy provides significant improvements
for busy server transactions. In this case, CHCM
policy reduces latency by about 5% to 20% and
CPU Utilization by about 5% to 15%; this implies
that though, in holding-time policy, if accesses
from clients to a server increase explosively and
then concurrent connections of the server with
clients are occupied, the access requests of new
the until the
holding-time of any idle connections occupied
becomes expired and therefore the part of resources
such as memory and socket buffers available. In
CHCM policy, however, they can receive service
without waiting for idle connections with connected
clients being expired. And advantage of CHCM is
no additional overloading that is imposed to server
if the
connection same mechanism runs on server-side,

clients to server should wait

and can degrade performance of server

because it runs on client-side.

5. Conclusions and Future Works

We proposed the mechanism of a heuristic

connection supported by the
client-side in addition to fixed holding-time model
on server-side, under persistent HTTP. For the
mechanism of heuristics, we defined finishing time
of transmission for HTML page and all embedded
file in it as connection-closing time on client-side.
The client exploits the
transferred HTML

connection—closing time.

management

information in
that
As the Processing for

tag
page so decides
parsing of tag information in HTML file occurs on
client-side, the mechanism allows server to use

server's resource more efficiently without
decreasing performance of server-side and give
services to clients more fairly. Therefore our
mechanism supports a good balance between
benefit and cost of maintaining open connections
and to enforce some quality of service and fairmess
issues. As future works, we will add pipelining,
part of http/1.1 features, to our CHCM mechanism

for better implementation results.

References

1. E. Cohen and H. Kaplan: Exploiting regularities
in Web traffic patterns for cache replacement, in:
Proc. 3lst Annu. ACM Symp. On Theory of
Computing, ACM, 1999.

2. M. Elaud, C.J. Sreenan, P. Ramanathan and P.
Agrawal: Use of server load to dynamically

time for HTTP/1.1

servers, Submitted for publication, March 1999.

select connection-closing

3. J.C. Mogul: The case for persistent-connection
HTTP, Comp. Commun. Rev. 25 (4) (1995)
299-313.

4. V.N. Padmanabhan and 1C. Mogul: improving
HTTP latency, Comput. Networks ISDN Syst.
28(1/2) (1995) 25-35.

5. T. Berners-Lee, R. Fieding, J. Gettys, J.C.
Mogul, H. Frystyk, L. Masinter, and P. Leach:
Hypertext Transfer Protocol HTTP/1.1 RFC2616
Jun 1999.

6. L.A. Belady: A study of replacement s for
virtual storage computers, IBM Systems Journal
5 (1996) 78-101.

7. Apache HTTP server project.

510

