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Simulation of Compressible Stratified Flow by the
Finite Difference Lattice Boltzmann Method
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1. Introduction

In recent years, the interest to the lattice
Boltzmann method (LBM) has been rapidly
increasing, and the number of applications has
also been increasing from conventional ordinary
fluids to complex fluids.

The lattice Boltzmann method (LBM) is a
method to simulate motions of continuous fluids
by computing the collision and the propagation
of microscopic particles. This method has been

developed from the lattice gas automata
(LGA"?  Essentially the technique is
considered to simulate the Navier-Stokes
equations, and actually the Navier-Stokes
equations are derived by the so-called

Chapmann-Enskog expansion technique. But the
particles translate from one lattice site to
neighbor site without collision, and the lattice
size can be considered to be the counter part
of the order of the mean free path in the
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molecular gas dynamics. The lattice size is not

necessarily small compared with the length
scale.
The finite difference lattice Boltzmann

method (FDLBM) is one of tie computational
fluid mechanics methods which is developing
from the LBM®™“ In the LBM, fluid is
regarded as gathering of many particles
repeating collision and translation, and the
motion of macroscopic fluid s expressed by
calculation of those two motions of particles.

Although by using LBM until now, authors
examine the flow in which the gravity is
important such as the natural convection, the
thermo hydrodynamic model is developed and
has been verified”. However, .BM have many
problems such as becoming unstable
numerically to a heat flow problem or a high
Reynolds number flow.

But, by making the lattice from in dispersion
of space, and the physical “orm of particle
movement separate, FDLBM became possible
and easy to calculate for ccmplicated object
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form, and the application of its to various flow
places was, attained.

The effect of the gravity in the compressible
fluid is greatly different from that of the
incompressible  fluid In case of the
incompressible fluid, the fluid is stable when
the density increases in downward, and it is
unstable when reversed. However, the density
changes by the pressure when the fluid is
compressible, and in the criterion of above, it is
insufficient.

For the compressible fluid, though there are
many cases in which concepts such as the

potential temperature are used, but it is
vconvenient to introduce the entropy as a
general concept used and consider the

stratification of the entropy[sl

The criterion of the stability is that the fluid
is stable when the entropy increases upward, if
the fluid motion changes in iso-entropic
manner, and unstable otherwise.

Stratified flows have been studied in
connection with geophysical fluid dynamics,
such as ocean dynamics atmospheric
dynamics. But in compressible fluids, the
density stratification under the gravity is not

and

enough and the entropy stratification is
essential.

In this report, selective  withdrawal
phenomenonw], which is a typical phenomenon

in stratified flow, according to the lattice BGK
compressible fluid model is simulated, and the
effectiveness of the model is confirmed.

2. The thermal lattice BGK model
2.1 The thermal lattice BGK equation

The discrete lattice BGK equation i
7]
a]; te V== %(fi— ) ()

where f; is the particle distribution function in
i direction, f ,(O)refers to the local equilibrium
distribution function, c¢; is the particle velocity,

and ¢ is the relaxation parameter.

The dynamics of the fluid can be described
by the distribution function obeying the lattice
BGK equation (1) and the macroscopic
variables are given by the equilibrium
distribution function.

Here, the fundamental physical variables are

the density p, the momentum pu,, and the

internal energy e

o=2fs=2f & o, @)

ua:;;foicm= 2. D¢ g » 3

pe=§%f¢c L= o= ;%f e m—%—pu

4)
where u, is the component of flow velocity
and the
coordinates.

The local equilibrium distribution function in
equation (1) is expressed as

D= F,p[1=2Bc gtta+2B¢ siac asthattpt B’

index @ represents Cartensian

—2B% ¢ gt ® — % B3C 5:4C 6igC oiyhatd gih,) )]

The moving particles are allowed to move -
with five kinds of speed, ¢, 2¢, 3¢, V2¢, and
2W2c. Here,

determined as
cmzmc{cos( ”(ZE_ D, 7r(m4— D )
ﬂ(iz—l) + K(rrii—l) )} ©®)

the velocity of particles is

sin (

(i=1,...,4, m=1,2, k=1,2,...)

Fig.l1 A copmressible lattice Boltzmann model
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where ¢ in equation (5) shows wm, k in the
equation (6), and m=1 is the particle which
moves the square edge is paralleled, and m=2
is correspondent with the particle which moves
in the diagonal line direction, and % shows the
speed of integer twice of the speed of the
particle moved to the nearest neighbor lattice.
The Navier-Stokes equations are derived
from the above equation and the Chapman -

Enskog expansion. The function Fy, Fy, Fi,
F3, Fy, Fy, are determined as

435 49

=1+ (s 48Bc2 +ig) G
Fy=- . ( 161132 o+ 243 ; +3) (7b)
Fp= 16Bcz( 162204 + 2421530 ) (7c)
Fo== g (TEa t et ) 0
Fy =—4§—3€6—( %02 +%) (7e)
Fp=— "1_53—6173W (2Bc?+3) 70
and, B~-—-2—e : (7g)

2.2 Introduction of the gravitational force
We shall consider the external force,
especially the gravitational force. When the
gravitational force acts downward, the density,
the momentum, and the internal energy will be

changed as
Mass : p— p (8)
Momentum : pou — o(u—g- ¢) 9

Internal Energy :

é—pu2+pe—> %pu2+pe~%p|g12'¢ 10
And the equations (8), (9), and (10)
substituting in equation (5) and (7), and
including the effect of the gravity in the

equilibrium distribution function, it is chosen

that this is written with f ‘9%
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Then equation (1) is written as

9fi Lo

and by using the Chapmann-~Enskog expansion
for the equation (11), and taking the moment of
¢;, the
gravitational force works is obtained by

11)

Navier-Stokes equation as the

—%%+ ila (pu,) =0 (12)
-g—t- (pu,) + a—(pu,,u,g) - '5;,3 — 08,
s e e [ ) 09
%(pe+§pu2> + aila (,oe+ P+1 o Ju,~ g,
= aila( K aari>+ ail, {”” g:i + gz; )}

The pressure, Kinetic viscosity, the second
viscosity, and the conductivity of the internal
energy of this fluid are given, respectively, by

P=%pe, #=%pef(¢—%)

A=——4—per(¢—L),
pr=2 D+2 pel_(qs

where D mdlcates the dimension and 2 in this
case.

) (15ab,c,d)

2.3 Definition of the entropy
In the two-dimensional mode, the pressure p

and the entropy s are obtained, respectively, by
1r
p=ep, and s= clog(-%-)

where the ration of the specific heats

(16), (A7)
T is
given by (D+2)/D, and in two-dimensional
flows T=72. Therefore we have

s o< loge— logp. (18)

2.4 The potential density
In the concept often used in geophysical fluid
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ggmamics, there is that of the potential density

Though this is a concept equal to the
entropy stratification, when the fluid motion is
isentropic, the density as some given density
distribution changes in one standard pressure
fluid isentropic like what was said, and when
this potential density decreases for the upper
part, the fluid is stable, and it is unstable when
it is reversed.

That is to say, potential density distribution
is correspondent to the density distribution in
the incompressible fluid. Here, we consider that
the Froude number F7 is defined using the
density in the channel of upper and lower side.

To begin with, the amount as there is no
disturbing in the flow shall be shown in suffix

B. At this time, the potential density is
expressed as
Ur
b
oa=ro ) 19)
bB

where suffix 0 shows the standard position,
and the ratio of specific heats is =2 in the
two-dimensional model.

The standard position is taken at lower side
in the channel, and it is shown in suffix 1, 2,
respectively, and the buoyancy frequency N
and the Froude number of the flow are defined,
respectively, as

1/2
_[_&g& P—Pm
( g-fn- ) 20)
__Q

Here, d is the channel height and @ is the
fluid volume flow rate which flows out the
sink in unit time.

3. Line sink flow and calculation

Line sink flow in the stratified flow as
shown in Fig. 2 is calculated, and we examined
degree of stratification of the entropy and
aspect of the sink flow. The fluid the
gravitational force acts downward, and it flows
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Fig. 2 Two-dimensional line sink flow

e O d partices M ; New particles < Partilces after BC

Fig. 3 Boundary condition at solid wall

in the channel which established solid walls in
which there are level for top and bottom and
solid wall which is perpendicular to right side
as shown in Fig.2. The left side in the region
extends infinitely. The stratified fluid in this
region drain out the line sink which locates at
the right corner starting from quiescent state.

On the solid wall, the boundary condition is
diffusive reflection of the particle. Particles.
which reach solid wall rebound in a velocity
distribution given in equilibrium distribution
function (5) which depends on the speed, the
density, and the temperature (the internal
energy). In short, it is correspondent with
giving no-slip condition and condition of the
temperature, in the solid wall. The density in
the boundary is determined as follows: the
particles which approach the boundary stops, as
it is shown in Fig. 3, and they are added the
particles which flow into the boundary (central
figure), and the density in the boundary node
is so defined.

Equation (1) is solved by the second order
Runge-Kutta method, and the space derivative
of convective term is discretized by the
QUICK.

The velocity of the sink is set to be 0.02 in
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E

(a) Velocity vectors

3. 2685E+01 3. 5613E+000

(b) Entropy

3. 4985E+000 4. 9149E+000

(c) Density

2. Y038E+000

(d) Pressure
Fig. 4 Uniform entropy

9E+000

Fig. 5 Velocity vectors in stable stratification

all calculations, and the width of the sink is

made to be the 3 latticess We set the
acceleration of  gravity £=0.02, and
At=0.01 for time, and the relaxation

coefficient is being changed by the calculation.
That is to say, it is chosen so that the
calculation may stably advance by changing the
viscosity coefficient.

The density was uniformly set to be 1.0 as
an initial condition in all regions, and the

mean value of upper wall and lower wall. The
calculation is carried out without sinking, and
the sink started, after it almrost reached the
steady state.

The fluid of the lower level receives the
compression, when the gravity works, and the
temperature ( the internal energy ) increases.
Then, by the energy diffusion ( by the
temperature conduction ), the internal energy is
carried above, so that the entropy of the upper
part increases, and the nonuniformity of the
entropy occurs. Therefore, we shall generate
the entropy stratification by adequately
changing the boundary condition of internal
energy of upper wall and lower wall, without
setting.

4. Results and discussion

The calculation is carried out as an
initial-value problem, as it is described in
Chapter 3, but from now, we just consider the
result when the calculation almrost reach steady
state.

Figure 4 shows the velocity vectors in
almost uniformly distributing cf the entropy in
the flow field. The internal erergy on the top

wall e;=0.83, and that on the bottom wall
6120.87.
Though the density increases for the

downward, as is shown in Fig. 4(c) under the
effect of the gravity, the entropy is almost
uniform, as is shown at Fig. 4'b), and the flow
is in a condition of a neutral stability. The
fluid flows out to the sink from the whole
region this time. This is coTespondent with
the flow as the density is uniform. Figure 4(d)
also shows the pressure distribation.

Though the stratification is stable in Fig. 5,
the velocity vector distribution as the intensity
of the stratification is not sufficient, is shown.
The temperature in the top wall and the
bottom wall is e;,=0.5, e;=1.0, respectively.
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2.8501E+000 5. 2781E+000

(b) Entropy

e o
1. 1358E+000 4, 2918E+000

(c) Density

T
2. 1459E+000

8, 9T79E-001

(d) Pressure
Fig. 6 Strong stable stratification

In this case, a dividing stream line appears,
and stagnation area occurs for the upper part
of the sink, but the fluid from the whole region
flows into the sink.

When the Froude number defined in Chapter

2 is considered, 0.4%107% with
very small value. For the flow of this small
Froude number, only the flow in the horizontal
leve almost equal to the sink is selectively
flows out in case of the inviscid incompressible
flow, but, in present calculation, the fluid from
the whole region flows out.

The Reynolds number is 50 calculated from
the flowrate and the coefficient of kinematic
viscosity, so that the effect of the viscosity
seems big. Here, we can suppose that it is

it becomes

possible to consider the effect of the
compressibility. In the vicinity of the sink
point, there is the expansion of fluid.

In the incompressible fluid, the vorticity
occurs from the deviation of pressure gradient
and density gradient, and it is the reason why
this selective withdrawal is established in the
flow, whereas in the fluid expands, it
propagates almost isotropically on the effect of
sink as expansion wave, and it substantially
has the effect in which mouth of sink expands.

And, the pressure as a fluid which close to
the bottom wall is high, the proportion of the
density reduction by the expansion is big. In
short, the pressure drop will be considerable,
and the robust fluid flows into the sink in the
effect of the gravity and seems to generate not
only horizontal flow but also the flow which
approaches the stock. This is remarkable in
case of following the strongly stable
stratification.

The strong entropy stratification is obtained,
when the temperature of the top wall and the
e;=0.5, e;=1.5,
respectively. In case of the stratification which
is sufficiently stable like this, the fluid of lower
half is withdrawn which proven from velocity -
vector distribution shown in Fig. 6(a), and
there is making circulating flows at the top
region. It is a phenomenon equal to selective
withdrawal phenomenon observed in the
reservoirs which are established the
temperature stratification. Figure 6(b), (c¢) and
(d) show the distribution of the entropy, the
density and the pressure, respectively. In the
pressure distribution of Fig. 6(d), there is the
rapid decreasing of the pressure near the sink,
as stated above it.

In the sufficiently stable stratification, such
selective flow is generated the internal gravity
wave from the line sink, and the mode is
formed by the top and bottom solid walls, and
that it propagates to the upstream(s). In the
incompressible inviscid fluid, the pattern of the

bottom wall is put
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(a) Velocity vectors

—a— X=18/20
—— X=1/2
—6— X=1/20

(b) Density distribution
Fig. 7 Velocity profiles and density at x=19/20,
1/2 and 1/20

clear internal gravity wave is obtained for the
flow of low Froude number. But in present
calculation, we can’t get the wave pattern.
Though the lattice number is taken for each
double 200%40 in length and height direction
on trial, the calculation result is equal to the
pattern as the lattice is fewer. It is considered
that, in short, the pattern of the clear internal
wave is not obtained in this calculation.
Though the effect of the wviscosity is also
considered, as it is mentioned as this reason
earlier, the effect of the compressibility seems
to be also big.

In order to examine the compressibilty effect
in the flow in detail, the velocity distribution
and the density distribution at 3 cross section
in the examined channel when the flow is
almost steady. The result is respectively shown

H 2 &2EY
|

3. 5533+000
(b) Entropy

3.2631E+000

523

3, 8687E+000 4. 2881E+000

“(¢) Density

3, SU94E+000
(d) Pressure
Fig. 8 Unstable stratification

r
3. 1671E+000

in Fig. 7(a) and (b). Here, from the left in the
figure, the distances from the sink are positions
each 19/20, 1/2 and 1/20 for the channel length.
We obtain that the mass flow rate in each
cross section is an almost equal value, and the
continuity is satisfied.

However, when density distribution 1is
observed, the density decreases, as it goes near
5 to the downstream in lattice node from the
wall of the lower. And, at 1/20
is turned to the flow velocity
of the sink and fluid expansion
downward but it

cross section, it
vector, because
affect, incline to
is almost horizontal. The
density is a function only of the streamline, if
the flow is the incompressible :luid, because it
is almost steady.

In figure 8, the flow of the unstable
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stratification is shown. The temperature in the
top wall and the bottom wall is put e€;=0.75,

e;=0.95, respectively. The convection pattern

like Benard convection appears from the flow
distribution (a), the entropy distribution (b), the
density distribution (c). Then, the effect of the
sink is hidden for large fluctuation of the
convection pattern due to this instability. In the
meantime, in the pressure distribution (d), the
iso-pressure line is almost horizontal, and it is
proven to be a flow field which establishes
Boussinesq approximation.

5. Conclusion

By the finite difference calculation using
compressible lattice. Boltzmann fluid model, sink
flow in the two-dimensional entropy
stratification was calculated.

And the difference between the inviscidity
and the incompressible fluid in sink flow is
also examined from the viewpoint of the
compressibility.
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