Vapor Pressure of Carbon Dioxide and Solubility of Nitrous Oxide in Aqueous Solutions of Carbon Dioxide Loaded Methyldiethanolamine

Moon-Ki Park, Young-Soo Moon, Sang-Ki Choi¹ Dept. of Environ. Sci. & Eng., Kyungsan University ¹Faculty of Environ. Sci. & Tech., Keimyung University

1. INTRODUCTION

The objective of the work presented here is to measure the total solubility of CO₂ in 50 mass % MDEA solutions over a wide range in temperature and CO₂ partial pressure and to measure the physical solubility of N₂O in these solutions as a function of the CO₂-loading. Haimour and Sandall (1984) showed that predictions of physical solubility and diffusivity using the nitrous oxide analogy method can be used to predict absorption rates of CO₂ into aqueous MDEA under conditions of very short contact times where the chemical reaction does not affect the absorption rates.

2. EXPERIMENTAL

Figure 1 shows a schematic drawing of the modified Zipperclave reactor used in this work. The reactor consists of a one liter stainless steel cylindrical tank with an air-driven magnetically coupled stirrer on the top. There are valves for inlet of gas and liquid, and a connection to a vacuum pump. A thermocouple inserted in the cell measures the temperature to an accuracy of ± 0.1 °C. The pressure is measured by a pressure transducer with an accuracy of ± 0.02 psi.

Initially a weighed sample of approximately 500g liquid is sucked into the reactor. The temperature is then adjusted to the desired value through use of the external heating jackets. A vacuum is then pulled on the reactor so that the liquid exists under its own vapor pressure. This solution vapor pressure, P,, is measured. A known quantity of CO₂, N_{CO2}, is transferred to the reactor from a gas container of known volume

$$N_{CO_2} = \frac{V_T}{RT_a} (z_1 P_1 - z_2 P_2)$$

where V_T is the volume of the gas container, z_1 and z_2 are the compressibility

factors corresponding to the initial pressure, P_1 , and the final pressure, P_2 in the gas container before and after transferring the CO_2 and T_a , is the ambient temperature. After transferring the CO_2 to the reactor, the stirrer is turned on and equilibrium is attained in about 10 minutes.

3. RESULTS AND DISCUSSION

This equilibrium pressure P_{CO2} (= P_{T1} - P_v) is measured and the moles of CO_2 remaining in the gas phase is determined from

$$N^{g}_{CO_{2}} = P_{T_{2}} - P_{CO_{2}} - P_{v}$$

The moles of CO₂ in the liquid is then determined from

$$N^{l}_{CO_2} = N_{CO_2} - N^{g}_{CO_2}$$

The CO₂-loading in the liquid phase is defined as

$$L_{CO_2} = \frac{N^l_{CO_2}}{N_{Am}}$$

where N_{Am} is the moles of MDEA in the liquid phase.

$$N_{Am} = \frac{W_{MDEA} \rho V_i}{M_{MDEA}}$$

To measure the solubility of N_2O in the CO_2 -loaded solutions a known quantity of N_2O is transferred to the Zipperclave reactor containing the CO_2 -loaded amine from a gas container. The mass of N_2O transferred is determined in the same manner as for CO_2 . After transferring N_2O to the reactor, the stirrer is turned on. An equilibrium is achieved after about 10 minutes and the total pressure, P_{T2} , is measured. The partial pressure of N_2O , P_{N2O} , is calculated from

$$P_{N_2O} = P_{T_2} - P_{CO_2} - P_v$$

The moles of N₂O in the gas phase are determined from P_{N2O} by

$$N^{g}_{N_{2}O} = \frac{z_{N_{2}O}P_{N_{2}O}V_{g}}{RT}$$

4. CONCLUSION

The nitrous oxide analogy method may be used with the H_{N2O} data presented here to estimate the physical solubility ofd CO_2 as a function of temperature and CO_2 -loading. They physical solubility of CO_2 is the key physicochemical property needed to calculate CO_2 mass transfer rates.

In this investigation, we have measured the total solubility of CO_2 as a function of partial pressure of CO_2 in 50 mass % MDEA solutions over a wide temperature range. These data should be useful for the design of absorption columns using MDEA to remove CO_2 .

REFERENCES

Clark, J. K. A., Kinetics of absorption of carbon dioxide in monoethanolamine solutions at short contact times. Ind. Eng. Chem. Fundam. 3, 239–245, 1964.

Laddha, S. S.; Diaz, J. M.; Danckwerts, P. V., The N_2O analogy: the solubilities of CO_2 and N_2O in aqueous solutions of organic compounds. Chem. Eng. Sci., 36, 228–229, 1981.

Haimour, N. K., Sandall, O. C., Absorption of Carbon dioxide into aqueous methyldiethanolamine. Chem. Eng. Sci., 39, 1791–1796, 1984.

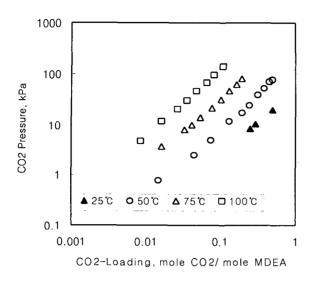


Fig. 2. Solubility of CO₂ in 50 mass % MDEA solution.

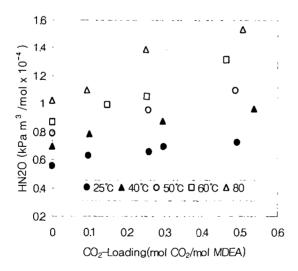


Fig. 3. Henry's constant for N_2O in 50 mass % MDEA as a function of CO_2 loading.