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Semi-active Damping Control for Vibration Attenuation:

Maximum Dissipation Direction Control
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ABSTRACT

A practical and effective semi-active on-off control law is developed for vibration attenuation of a natural,
multi-degree-of-freedom suspension system, when its operational response mode is available. It does not need
the accurate system parameters and dynamics of semi-active actuator. It reduces the total vibratory energy of the
system including the work done by external disturbances and the maximum energy dissipation direction of the
semi-active control device is tuned to the operational response mode of the structure. The effectiveness of the
control law is illustrated with a three degree-of-freedom excavator cabin model.

INTRODUCTION

As the need for reduced noise and vibration increases,
the suspension systems of machines and structures are
becoming even more complex and more important than
ever. Among others, the semi-active suspension system is
known to be a good candidate for practical applications
because it combines the advantages of passive and active
suspension systems. It provides far better performance
than the passive suspension system, not requiring high
power actuators or supplies. It costs less and its
performance is often not better than the active
suspension  system, although the  controller
implementation remains almost identical.

Semi-active control laws, which are often developed
by modifying active control laws, require an accurate and
yet robust mathematical model of the structure and the
control devices. Clipped-optimal control is perhaps one
>f the most commonly used semi-active control
algorithms, due to its robustness to change of the system
>arameters. On the other hand, semi-active control
Jevices possess inherent nonlinearity so that
Jdevelopment of optimal control laws becomes
vhallenging. As the suspension technology advances,
many passive suspension systems have been replaced by
semi-active  suspension  systems. The stringent
performance requirement for semi-active suspension
systems is the simple implementation, not the best
isolation. Thus, numerous semi-active on-off control
algorithms have been developed and adopted for semi-
uctive control systems, which are robust to modeling
uncertainties. The ‘sky-hook’ damper control algorithm
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has been commonly adopted for vehicle suspension
systems and demonstrated its improved performance
over passive systems when applied to a single degree-of-
freedom system[1]. Recently, a control algorithm based
on Lyapunov direct stability theory has been proposed
for electrorheological fluid dampers{2, 3]. It reduces the
responses by minimizing the cost function, the rate of
change of a Lyapunov function, where the state
weighting matrix is to be properly selected.

SEMI-ACTIVE CONTROL SYSTEM

The semi-active control system originates from a
passive control system which has been subsequently
modified to allow for adjustment of mechanical
properties. The mechanical properties of the system may
be adjusted based on feedback of the excitation and/or
the measured response. The control force in a semi-
active control system normally acts to oppose the motion
of the system, promoting the global stability of the
structure. Semi-active conirol systemns maintain the
reliability of passive control systems and, yet, take the
advantage of the adjustable parameter characteristics of
active control systems. Among others, energy dissipation
devices which dissipate energy through various
mechanisms such as shearing of viscous fluid, orificing
of fluid, and sliding friction, have commonly been
modified to behave in a semi-active manner{4]. Without
loss of generality, a semi-active control force, F;, may
be modelled as a linear damper with controllable
damping, i.e.

F; =v;()5,(0.4.5), M
where r',(q,y) is the relative velocity vector between
two ends of the ith semi-active device; q and q
denote the » dimensional vectors with components of
generalized coordinates ¢, and generalized velocities
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gi>» k =1to n, foran n degree-of-freedom system;
y(t) and y(t) are the m dimensional external
disturbance vectors with components of dispacements
Y; and velocities j/j, j =1 to m, where m is

the number of external disturbances; v;(¢) is the
variable damping coefficient with
0<Vimin SVi(DSVjpar» i = 1 10 p, where p is

the number of semi-active devices; v and v,

imin
are the smallest and largest allowable values for v;. For
a semi-active vibration control system, Rayleigh's
dissipation function R can be expressed as

R=R,+R,, 2)
where R, = % }s:(c,-r‘,.z), ¢; is the damping coefficient
il

of passive mounts or dampers, i = 1 to s, where s
is the number of the passive devices; and

R, =%ij(v,-r',-2). Here R, and R, are the Rayleigh's
i=l

dissipation functions derived from the original
dissipative forces and the semi-active control forces,
respectively.

CONTROL STRATEGY

For a natural system, the Hamiltonian /A reduces to
the total energy of the system and its rate of change can
be expressed as

H=H,+H, 3)
where Hy=% are ~6—Lék ,
k=0 dt\ Oy Oq
- m JL . . . ..
H;=-Y—y; and L is Lagrangian. Here, H; is
A1y

the energy inflow rate due to the external disturbances

applied to the system and H 4 is the change rate of the
system energy. When there are dissipative forces derived
from the Rayleigh's dissipation function R in Eq. (2),
we can obtain

Hy=Hgy+Ha @
where H, =—§c,r’,[i—rf—qkj and
i=1 k=109,

Hy = —fjvir'i(i—g—qkj. Here, Hd,, is the energy
i=1 k=10,

dissipation rate due to the original passive dampings in

the system. The variable damping coefficients of the

semi-active control devices should be set to be

dissipative for interested generalized coordinates of the

system and thus to make H 4 hegative. But, because of
the semi-active nature of control forces restrictions and
the presence of external disturbances, it is impractical to

keep H, always negative. However, it becomes

feasible to keep H 4 nhegative while the semi-active
control is activated. For that purpose, the variable
damping coefficient v;(t) may be determined as

n or.
if’:i[Zpik _.r,—qkathen Vi = Vimax » (5a)
k=t 0gy

P OF; .
if rz( 2 Pik — qk) <0,then v; = Vi min - (5b)
k=1 04y

where p; is the weighting factor imposed on the & th

generalized coordinate associated with the ith semi-
active device. For most of practical cases where we can

assume that v;;, iszero, H, can be expressed as

. v (o & . Ynoh
Hup==Ya)| Yo —d | 24
=t \k=l  Ogy k=104,

p non or, or, . .
==Yl T3 pu o xdi
=1 \k=u210 Oy Og,

i=1

Z.r . 2 - 7| & .
=-2a,9 D;q EEH‘M =-q" | 2a;D; |q
1

vilfil . :
where a; = - ; D; is an nxn real
n arl
2 Pix =4k
k=t Ogy
. s OF; OF;
symmetric matrix with elements of p,-ki——':’—. Note
Oqy 0

that, by the control action (5), H 4 becomes a
quadratic form of generalized coordinates only. Contrary
to Hg, H, explicitly contains both the generalized
coordinates and the external disturbances. So, it can be
divided into two terms with the coordinates and the
external disturbances, respectively, that is,

Hdo :Hdnc +Hdoe (7)
and H,,,, the term with the coordinate, in general, can
be represented in the quadratic form of

H e =-4"Cq ®)
where C is the passive system damping matrix with

Or;
elements of —- and ¢;.

9k
WEIGHTING FACTOR DETERMINATION

The Maximum Principle
For a real symmetric matrix A, the quadratic form

Q((;): qTAq produces a real number for every vector
g in R".Since Q(q) is a continuous function in K",
it attains a maximum on the closed, bounded set of
vectors |lgf =1 . The quadratic form attains the
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maximum A, at q=n; where A, is the largest
zigenvalue of the matrix A and n,; is the eigenvector
corresponding to A ;. Then for every unit vector q
orthorgonal to n, Q(('])S O(m,). But, on the subset
laj=1, ©d) again attains a
maximum A, at q=n, where 1, is the second
is the

eigenvector corresponding to A ,. Continuing in this
way we can get a set of mutually orthorgonal unit vectors
N at which the local extremal value A ; is attained

q-n;=0 and

sigenvalue of the matrix A and 1,

on the subset |[q] =1. We can also easily find that 0,
is in fact the kth eigenvector of A and that the value
Ay is the corresponding eigenvalue,
Ai2d,2z-24,[5]

From simple calculation, it is easily .derived that the
matrix D; has only two non-zero eigenvalues

irrespective of the matrix dimension, 7, except when all
weighting factors are identical. The eigenvalues are
obtained to be

Di -
i pos — (9)
2 2
11 »{ OF n{ Or
Aty =1 X | =y Zf - 10
eg 2 1«=1(6qu Pik Pt aqk ( )
and the eigenvector 1 :,)o‘s corresponding to 4 2;’,5 can
also be easily obtained as
OF; 14 p
D %, ]
O pos); = an

. 2
~here i[ﬁ pik) =1 and the superscript D,
k=1

Jenotes that the eigensolutions are calculated from the
matrix D;. When all weighting factors are identical,
eading to the ‘Sky-hook cantrol’, there exists only one
non-zero, positive eigenvalue. The weighting factors
then should be properly assigned such that the

D,
pos
with the excessive vibrational motion of interest. In this

zigenvector 1 [B)is corresponding to A is aligned

case, because the eigenvalue A :,)e'g is negative, the

vibration motion or mode corresponding to n,,':'g is
little damped.

Target Mode Selection

For proper assignment of the weighting factors, the
excessive dominant vibrational motion of interest,
namely the target mode should be specified to be aligned

with the eigenvector n plf;'s corresponding to A ‘z;,s. The

specified vibrational motion of interest may vary
depending on the vibrational chracteristics of the system
related to the energy storage and dissipaticn elements,
the excitation and operational conditions, and the user’s
subjective requirement on the performance. In practice,
the forced vibrations of many systems are often
dominated by the so-called operational deflection shape,
which can be a single natural mode or a combination of
many natural modes. When the target mode is chosen as
the dominant operational deflection shape of the
interested system, its general form becomes a
combination of natural modes. On the other hands, the
least damped mode, which often causes excessive
vibration, may be selected as the target mode. For
example, we can select the target mode such that

Niarger =Ty (12)
where 'qf,: is the eigenvector corresponding to the least
eigenvalue A5 and 1y is the target mode imposed
on the ith semi-active device. Note that, in this case,
the amount of energy dissipation is significantly
increased along with the target mode 1.

Optimization
Equations (9) and (10) suggest that, in order to make

A ';;,x large and 2 f,’;g small, all the weighting factors

should be positive. With such constraint, the actuator
eigenvector n plz;s may not become identical to the

specified target mode. Thus we find the n dimensional
weighting vector x; = {p,1 Pir p,,,} for the ith

semi-active control device which minimizes the cost
function

) =1-Corr (e o) (13)
subject to the n inequality constraints
Px20; k =1to n, (14)

where Corr(a,b) = which is a measure of

a’b
lal ]
alikeness between two vectors a and b. Note that,
when two vectors a and bare in line, Corr(a,b):l,

whereas Corr{a,b)=0 for a lb.

ILLUSTRATIVE EXAMPLE
As an example, vibration control of a three degree-of-
freedom excavator cabin suspension system s

considered. Figure 1 shows the dynamic model of the
excavator cabin with one semi-active linear damper in
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the suspension, accounting for the bounce, pitch and roll
motions of the cabin. For simplicity, it is assumed that
the principal moment of inertia axes of the cabin
coincide with the Cartesian coordinates. The semi-active
control device is assumed to be placed at point 1 as
shown in Figure 1. The equations of motion are obtained
as

A§=217 ns ={0 0 I}T ,  respectively.
Superscript C means that the values are calculated
from the matrix C. Note that the rolling motion is
decoupled from the other two eigenvectors and least
damped, when the four supporting passive dampers are
identical. The target mode is determined as

mz + ¢, (2 +1, coseyéy —w,cosd. b, — b2 )+ cy (z‘ -1 cosﬁyéy - w,cos0,.0, — yz)

+c3 (z' - cosﬂyéy +w cosd,6, - ¥, )+ cy (2 +1, coseyéy +w, cosb,0, —'y‘,)

+kl(Z+12 sinf, —w,sind, —yl)+ kz(z—l, sinf, —w;, sinf, —yz) (15a)

ths(z =1 sin6, +wysing, - y; )+ ky(z + 1,506, + w sin6, - y,)

+ v(é +15c080,0, — w, c0s6,0, - )= 0

1,8, +cl, cos, (z' +1,c080,0, ~w, c0s0,0, - 3 )— ¢yl cos8, (z’ ~1,c0s6,8, ~ w, cos,6, — jzz)

- c3l; cosd, (z' ~lcos8,0, +w, cos8,0, -y )+ cyly cos, (2 +1,c0s0,0, +w, cos8,0, —y4)

+hlycos0,(z+1,5in0, —w,sing, - y;)-kyly cos8, (z ~fysind, —w, sin G, - y,) (15b)
— ksl cosﬁy(z ~hsin@, +wsind, -y, )+ kyl, cosf, (z +1L,sin8, +wsing, - y4)
+vl, cosd, (z' +1, cosayéy -w, cos0,9, - y1)= 0

1.6, —c,w, cosb, (z' +1, cosﬁyéy —w, c0s8,0, -y )—czwz coséd, (z' - cosGyéy —w, c0s0,6, —jzz)

+cyw cosb, (z' -1 cosByéy +w cosﬁ,ﬂ')r —y3)+ caw cosf, (z' +1, coseyéy +w cos@xéx —y4)

—kyw, cos@x(z +/,sing, ~w,sind, —yl)— kow, cosex(z—l, sind, —w, sind, —yz) (15¢c)

+ k3w, cos, (z —1I;sind, +w sind, —y3)+ kyw, cos8, (z +1;sin6, +w; sing, —y4)

—vw, cosf, (z' +1, cosﬁyéy - w, 086,60, -y )= 0

where z, 9, and @, are the linear displacement and M arget E"lg — {0 0 I}T (17)

rotation angles of the cabin mass center along the z, y
and x axes; ¥; and Vi j=1,2,3,4, are the linear

velocities and displacements at point ; along the z axis,
acting as external distubances to the cabin. The system

if (z' +1, cos Gyéy ~w, c0s 0,0, - jz,Xplz' + Pyl cos Byéy — P3W; €OS t9x0'x)2 0,v=v,,,

else
parameters and damping coefficient of the semi-active
control device are listed in Table 1. Assuming the small

motion, H Joc Can be approximated as a quadratic form
of

Haie =-0"Cq (16)
where

C +Cy ey +ey
C=| hley+ecg)-hcy +¢3)

wics +c3)—=wylep +¢3) wollicy —hhe)—willies —lhey)

and q" ={z' 9y éx}. The three eigenvalues and the
corresponding eigenvectors of the . matrix C are
obtained as A€ =1203 , 4 ={099 014 o} ;
2§=1072 , 9$={014 -099 0} ; and

L +cy)—li(cy +c3)
122((:] +c4)+1]2(c2 +c3)

so that the semi-active damper can extract energy mostly
from the least damped rolling motion. The proposed
control law gives the variable damping of the semi-active
control device as

(13)

V=V

By the control action, H 4 can be approximated as a

quadratic form given by '
H, =-0q4"Dq 19)

_ W+ 16, - b, - 5|

where a

) ”Pﬂ + lezgy - p3wyb,

wi(cy +¢4)—wy(c) +¢,)
wy(lic; —lhe) - wilhes —lhey)
w%(c, +c2)+w12(c3 +cy4)

2 A1 "2'.02 I, _Atps Wy
+ 2 Prtp
D= ﬂ_z_&]z pl; __2__112“,2 .
+ Pt p
_ P 2P3 w, - 2 . 3 Lw, p3w22
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Table 1. System Parameters

Symbol Content Value
m Mass 602 kg
I Moment of inertia w.r.t. X-axis | 244.6 kgm®
I, Moment of inertia w.r.t. Y-axis | 258.9 kgm®
! Length from mass center 961 mm
! to mount 2 or 3 along X-axis
Length from mass center
b to mount 1 or 4 along X-axis 931 mm
w Length from mass center 480 mm
! to mount 3 or 4 along Y-axis
w Length from mass center 480 mm
? to mount 1 or 2 along Y-axis
[ i th mount damping coefficient 30 Ns/m
k; i th mount stiffness coefficient 20 kN/m
Max. damping coefficient
Y max of semizlctigve mount 300 Ns/m
Yo Min. dmplng coefficient 0Ns/m
of semi-active mount

Figure 1. Dynamic Model of Three Degree-of-Freedom
Cabin Suspension System

since
obtain

For the ‘Sky-hook Damper’ control,
{or P2 p3}=1069 069 069} , we

A%, =145 and n D, ={0.69 0.64 -0.33) . This

action may not be desirable because the least damped
rolling motion is least attenuated.

For the target mode {0 0 ]}T , the optimization (13)
{or o2 ps}=fo 0 208}, 40, =09
and n Do ={-042 -039 082}". Note that q D,

gives:

is not identical to N e =N 3C, giving the measure of

alikeness of 0.6657. The inevitable discrepancy is due to
the inadequate location of the semi-active device and the
inequality constraints imposed on the weighting factors,
Eq. (14). Note that the least damped rolling mode is most
attenuated. When the system is subject to disturbances,
the response vector can be decomposed as

q=umy +un§ +um . (20)
where u, =q7 "l.c is the component of q projected
onC.

n the simulations, we compared the performances of the

‘ollowing 4 cases:
. Orig'nal system,

2. Passive damping control system which merely adds
a passive damper of v, atpoint I,

3. Sky-hook damper control system which is
equivalentto p, = p, = p; =0.69,

4. Proposed on-off damping control system with
p =0, p,=0 and p, =208,

subject to an impulse disturbance input at pt. 1, given by

»=015() 1)

where &(t) is a Dirac delta function. Figures 2, 3 and 4

show the impulse responses associated with the three

components u,, i =1,2,3,0f q, respectively, for the

above four cases. Note that the roll motion, u;, is much

larger than the bounce and pitch dominant motions, #,

and wu, , respectively because of the damping
characteristics of the original system. Responses of the
passive and the sky-hook damper control systems are not
distinguable because, except t+ = 0, there are no
external disturbances. The proposed on-off control

system gives smaller (larger) values of w3 (u; and
u, ) than the passive and the sky-hook damper control
systems. Figures 5, 6 and 7 are the Fourier transforms of
the impulse responses of and u,, w, and u,,
respectively, normalized by the intensity of the impulse
input. The results shown in the frequency domain also
confirm that the proposed on-oft control system shows
better attenuation for the roll motion than the passive and
the sky-hook damper control systems.

CONCLUSION

Using Lagrange’s equations and Lyapunov direct
method, an efficient semi-active on-off damping control
law for vibration attenuation of a multi-degree-of-
freedom vibratory system has been developed. It
minimizes the total vibratory energy of the structure,
including the work done by external disturbances,
whereas the dissipative energy of the semi-active control
device is transformed into the weighted quadratic form
and is maximized for the specified vibrational response
of the system by a proper assignment of the weighting
factors. The vibrational response vector of interest,
namely the target mode, is determined at will,
considering the vibrational chracteristics of the system
and the user’s subjective requirement on the performance.
Features of the proposed scheme are: it is robust to the
system parameters as well as the dynamics of semi-
active control devices; it needs theoretically a single
semi-active control device; and it needs only the velocity
feedback when the system is linearized.
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Figure 4. Roll Motion, u;(r)
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