B1 ## Alteration of Ion Selectivity by Mutations within the Poreforming Region of Small Conductance Ca²⁺-activated K⁺ Channels Heun Soh* and Chul-Seung Park Laboratory of Molecular Neurobiology, Department of Life Science, Kwangju Institute of Science and Technology (K-JIST), Kwangju, 500-712 Korea Small conductance Ca²⁺-activated K⁺ channels (or SK_{Ca} channels) are a group of K⁺-selective ion channels activated by sub-micromolar concentrations of intracellular Ca^{2+} independent of membrane voltage. We expressed a cloned SK_{Ca} channel, rSK2, in Xenopus oocytes and investigated the monovalent cation selectivity of the channels. We have used site-directed mutagenesis and macrochannel recordings to identify amino acid residues influencing the ion selectivity. Currents were recorded in bi-ionic conditions with K⁺ as the external cation and the test ion as the sole internal monovalent cation. Calculated permeability ratios (P_x/P_K) for the wild-type rSK2 channels yielded the sequence $K^+(1) > Rb^+(0.80)$ $> NH4^+ (0.19) \ge Cs^+ (0.18) > Li^+ (0.13) \ge Na^+ (0.12)$. Although this sequence is similar to those of other K⁺ channels, the permeability of Na⁺ ion is relatively high. Ala substitution of Ser359 residue, which is located near to K⁺ selectivity filter, GYG, in the pore-forming region, enhanced the passage of other test ions against K⁺. However, Ser359Thr mutation did not show the significant difference compared with wild-type. These results suggest that the hydroxyl group of Ser359 is critical for selecting ions prior to the K⁺ selectivity filter in rSK2 channels.