Proceedings of the Korean Society For Composite Materials Conference (한국복합재료학회:학술대회논문집)
- 2001.10a
- /
- Pages.87-90
- /
- 2001
Load Carrying Capacity due to Cracking Damage of Ellipsoidal Inhomogeneity in Infinite Body under Pure Shear and Its Elastic Stress Distributions
전단응력하의 무한체내 타원체불균질물의 균열손상에 따른 하중부하능력과 탄성응력분포
Abstract
In particle or short-fiber reinforced composites, cracking of the reinforcements is a significant damage mode because the broken reinforcements lose load carrying capacity. This paper deals with elastic stress distributions and load carrying capacity of intact and cracked ellipsoidal inhomogeneities. Three dimensional finite element analysis has been carried out on intact and broken ellipsoidal inhomogeneities in an infinite body under pure shear. For the intact inhomogeneity, as well known as Eshelby(1957) solution, the stress distribution is uniform in the inhomogeneity and non-uniform in the surrounding matrix. On the other hand, for the broken inhomogeneity, the stress in the region near crack surface is considerably released and the stress distribution becomes more complex. The average stress in the inhomogeneity represents its load carrying capacity, and the difference of average stresses between the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The load carrying capacity of the broken inhomogeneity is expressed in terms of the average stress of the intact inhomogeneity and some coefficients. It is found that the broken inhomogeneity with higher aspect ratio still maintains higher load carrying capacity.
Keywords
- Ellipsoidal Inhomogeneity;
- Load Carrying Capacity;
- Reinforcement Cracking Elastic Stress Distribution;
- Aspect Ratio;
- Micromechanics