Nondestructive Evaluation and Microfailure Modes of Single Fibers/Cement Composites using Electro-Micromechanical Technique and Acoustic Emission

Electro-Micromechanical 시험법과 음향방출을 이용한 단섬유시멘트복합재료의 미세파괴구조와 비파괴적 평가

  • Lee, Sang-Il (Department of Polymer Science and Engineering, Research Center for Aircraft Parts Technology, Gyeongsang National University) ;
  • Kim, Jin-Won (Department of Polymer Science and Engineering, Research Center for Aircraft Parts Technology, Gyeongsang National University) ;
  • Park, Joung-Man (Department of Polymer Science and Engineering, Research Center for Aircraft Parts Technology, Gyeongsang National University) ;
  • Yoon, Dong-Jin (Korea Research Institute of Standard and Science)
  • Published : 2001.05.01

Abstract

The contact resistivity was correlated with IFSS and microfailure modes in conductive fiber/cement composites electro-pullout and AE. As IFSS increased, the number of AE signals increased and the contact resistivity increased latter to the infinity. In dual matrix composite (DMC) test and AE, the number of signals with high amplitude and energy in g]ass fiber composite is significantly larger than that of no-fiber composite. Many vertical and diagonal cracks were observed in glass fiber and no-fiber composite under tensile test, respectively. Electro-micromechanical technique and AE can be used efficiently for sensitive nondestructive (NDT) evaluation and to detect microfailure mechanisms in various conductive fibers reinforced brittle and nontransparent cement composites.

Keywords