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1. Introduction

The problem of the vibration of arches has become a subject of interest for

many investigators due to its importance in many practical applications. The early

1

investigators into the in-plane vibration of rings were Hoppe ) and Love 2. Love

2 improved on Hoppe’'s theory by allowing for stretching of the ring. Lamb 3)

investigated the statics of incomplete ring with various boundary conditions and the

o used

dynamics of an incomplete free-free ring of small curvature. Den Hartog
the Rayleigh-Ritz method for finding the lowest natural frequency of circular arcs

with simply supported or clamped ends, and his work was extended by Volterra
and Morell ¥ for the vibrations of arches having center lines in the form of

cycloids, catenaries, or parabolas. Archer ® carried out for a mathematical study of

the in-plane inextensional vibrations of an incomplete circular ring of small cross

2)

section with the basic equations of motion as given in Love and gave a

prescribed time - dependent displacement at the other end for the case of clamped

7

ends. Nelson applied the Rayleigh-Ritz method in conjunction with Lagrangian

multipliers to the case of a circular ring segment having simply supported ends.
Ojalvo 8 calculated the natural frequencies out-of-plane vibration of circular arches

based on classical beam theory. Recently, Irie et al. Y have analyzed circular
arches based on Bresse-Timoshenko beam theory in which both rotatory inertia
and shear deformation are taken into account.

A rather efficient alternate procedure for the solution of partial differential

equations is the method of differential quadrature which was introduced by Bellman

and Casti ©

. This simple direct technique can be applied to a large number of
cases to circumvent the difficulties of programming complex algorithms for the
computer, as well as excessive use of storage. This method is used in the present
work to analyze the free in-plane shear deformable vibrations of curved beams.

The lowest frequency parameters are calculated for the member of rectangular and
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circular cross section under clamped-clamped end conditions. Numerical results are

compared with transfer matrix solution obtained by Irie et al. 9

2. System and Governing Equations

The uniform curved beam considered is shown in Fig. 1. A point on the
centroidal axis is defined by the angle 8, measured from the left support. a is the

radius of the centroidal axis, and @y is the opening angle. The radial and

tangential displacements by # and w, respectively.

Fig. 1 Geometry of the circular arch for shear deformation

The differential equations governing the in-plane vibration of a circular arch

based on the Bresse-Timoshenko beam theory, in which both rotatory inertia and

shear deformation are taken into account were given by Irie et al. 9 as
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in which each prime denotes one differentiation with respect to the dimensionless

distance coordinate, X, defined as X =—g—
0

k is the shear correction factor depending on the shape of the cross section, v is
the Poisson’s ratio of the arch, and ¢ is the slope of the displacement curve due
to pure bending. For simplicity of the analysis, the following dimensionless

variables have been introduced:
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si=Aa?/ 1, At=pA a" pPIEI, (4)

where A is the cross-sectional area, [, is the second area moment, o is the

material density, p is the circular frequency, E is the Young's modulus of

elasticity for the material, and s, is the slenderness ratio of the arch. The

quantities %%, k% and k% are the dimensionless parameters defined as

, k'=(d/4a) * ki= kM(1+ kD) ki= k*(1+4 K2+ k) (5)

?
for an arch with circular cross section of diameter & and

k%= (h/2a) coth (h/2a) — 1, k= k214 KO +(1/3)(W/2a) 2,
k3= K[ k' R+ (R20) 1)+ (1/3)(hf2a) (6)

for an arch with rectangular cross section of height #. If the arch is clamped at

8=0 and 6= O, then the boundary conditions take the form

w(0) =¢(0) = w(0) = u( 6,) =¢( §)=ul 6,)=0. (7)

3. Differential Quadrature Method(DQM)

The differential quadrature method(DQM) was introduced by Bellman and

Casti ¥

extension of quadrature for integrals in their introductory paper, they proposed the

. By formulating the quadrature rule for a derivative as an analogous

differential quadrature method as a new technique for the numerical solution of

initial value problems of ordinary and partial differential equations. It was applied

for the first time to static analysis of structural components by Jang et al. D The
versatility of the DQM to engineering analysis in general and to structural analysis

in particular is becoming increasingly evident by the related publications of recent

12)

years. Han and Kang applied the method to the buckling analysis of circular

curved beams. From a mathematical point of view, the application of the differential
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quadrature method to a partial differential equation can be expressed as follows:
L{f(X)}, = ngij f(x,) for i, j=1,2,...,N (8)

where L denotes a differential operator, x; are the discrete points considered in

the domain, Ax ,~) are the function values at these points, W, are the weighting

coefficients attached to these function values, and N denotes the number of
discrete points in the domain. This equation, thus, can be expressed as the
derivatives of a function at a discrete point in terms of the function values at all
discrete points in the variable domain.

The general form of the function Ax) is taken as
flx)=x*"1  for k=123,....N (9)

If the differential operator L represents an # th derivative, then

glwi-j =(b—1)(k=2)(b—mx* ™Y for i k=1,2,....N (10)

This expression represents N sets of N linear algebraic equations, giving a
unique solution for the weighting coefficients, W, since the coefficient matrix is a

Vandermonde matrix which always has an inverse, as described by Hamming 13

4, Application

Applying the differential quadrature method to equations (1), (2), and (3) gives

k. _ I G A U SR I b
20 +v) aezﬁB,,u,- (-2 52 e YT 2(1+v) 8 g}A,,sb,

+l1+ 2(1+v)] a0 ﬁAu w;=0, (11)
k k?
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+ Az—f?‘]% w,=0, 12)
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[1+ 2(1+U)]a€0 ﬁlAi) Uu; [2(1+U)+A S?,]‘ﬁ’ ag% Bl) w;

T (13)

¥

k
oy

where A, and B are the weighting coefficients for the first and second
respectively, along the dimensionless axis.
The boundary conditions for clamped ends, given by equations (7), can be

expressed in differential quadrature form as follows:

at X=0 : U= ¢1= w1=0 (14)
at X=1 . UN= ¢'N= ZUN=0 (15)

This set of equations together with the boundary conditions can be solved to

obtain the fundamental natural frequency for in—plane vibration of a circular arch.

5. Numerical results and comparisons

The natural frequencies of vibration are calculated by the differential quadrature
method The values A corresponding to the lowest natural frequencies are evaluated
for circular arches of rectangular and circular cross-sections under clamped-clamped
end conditions, and numerical results are compared with transfer matrix solutions

9 The shear correction factor, k£ is taken to be 085 for the

by Irie et al.
rectangular cross section and 0.89 for the circular cross-section, and the Poisson’s
ratio of the arch, v, is 0.3. All results are computed with thirteen discrete points
along the dimensionless X-axis. The accuracy of the numerical solution increases

with increasing N, passes through a maximum, but then decreases due to

numerical instabilities if N becomes too large (see Han and Kang 12y The

results are summarized for in-plane vibration in Tables 1 and 2. As can be seen,

the numerical results show excellent agreement with the solutions by Irie et al. »

except 12.57" in Table 2.

9), the frequency parameters of rectangular-cross—section arches

According to Irie et al.
are generally smaller than those of circular-cross-section arches and the difference

between them is very small. It seems, therefore, that 12.57 * should be 1057.
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6. Conclusions

The differential quadrature method was used to compute the eigenvalues of the
equations of motion governing the free in-plane extensional and shear deformable
vibrations of curved beams. The present method gives results which agree very
well with the numerical solutions by other methods for the cases treated while

requiring only a limited number of grid points.

Table 1 : Fundamental frequency parameter of in-plane vibration A=(pA a! p*/E1,)

for clamped~clamped arches with circular cross-section ; v = 0.3

S, 6 o(degrees) Irie et al ¥ DQM
60 23.75 23.758

20 120 10.61 10.613
180 4.151 4.1543

60 52.82 | 52.827

100 120 11.79 11.793
180 4375 4.3757

Table 2 : Fundamental frequency parameter of in-plane vibration A=(ed a* p2/E1,)

for clamped-clamped arches with circular cross-section including shear

deformation; v = 0.3

S,  84(degrees) Irie et al ¥ DQM
60 23.70 23.709
20 120 12.57* 10.585
180 4.143 4.1478
60 52.78 52.795
100 120 11.79 11.792
180 4374 4.3755
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