The Traffic Sign Classification by using Associative Memory in Cellular Neural Networks

  • Published : 2001.10.01

Abstract

In this paper, discrete-time cellular neural networks are designed in order to function as associative memories by using Hebbian learning rule and non-cloning template. The proposed method has a very simple structure to design and to learn. Weights are updated by the connection between the neuron and its neighborhood. In the simulation, the proposed method is applied to the classification of a traffic sign pattern.

Keywords