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ABSTRACT

In this paper, we propose two novel blind LMS algorithms, called exponential step size LMS algorithms
(ES-LMS), for adaptive array antennas whose convergence speed is increased, hence they are much more
capable of tracking the desired signal than the conventional LMS algorithms. Both of the algorithms require
neither spatial knowledge nor reference signals since they use the finite symbol property of digital signal.
Computer simulations were carried out in CDMA environment affected by multi-path Rayleigh fading to

verify the performance of the two proposed algorithms.

7HE
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1. Introduction

LMS algorithm has been widely used in
various applications, namely, adaptive filter,
system identification and antenna beamforming
because of its low computational complexity.
However, since LMS algorithm is a member of
the family of stochastic gradient algorithms, an
appropriate choice of step size is very
important for the algorithm to converge. A
small step size will ensure small
misadjustments in steady state, but the
algorithm will converge slowly. On the other
hand, a large step size will provide faster
convergence and better tracking capabilities, but
will result in higher misadjustments. In order
to increase convergence speed, a variety of
solutions have been proposed in the literature,
for example the transform~-domain LMS

(TR-LMS) algorithms, [11-[3], the exponentially
weighted step size NLMS, [4], some gradient
adaptive step size LMS algorithms [5]-[6], or
the coherent LMS algorithms [7]. Based on this
background, we consider the application of
LMS algorithm for smart antenna beamforming.
Smart antennas are a promising approach for
increasing capacity in wireless communications.
Consequently, various blind and non-blind
beamforming algorithms for smart antennas

have been proposed in the literature.
Nevertheless, blind algorithms are of more
interest because they require no training

signals, thus resulting in bandwidth efficiency.
Such algorithm employed the advantage of
signal properties such as constant modulus
(CM) [8], decision-directed (DD) [9], or finite
alphabet (FA) [10]. In this letter we propose
two novel blind LMS algorithms, called
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Exponential step size LMS (ES-LMS), for
smart antenna applications. Convergence speeds
of the two proposed algorithms are faster than
their conventional counterparts. Simulation
resuits showed that ES-LMSI] and ES-LMS2
are much more capable of tracking signal
sources than the conventional LMS algorithms.

I1. The proposed algorithms

First, consider M signals impinging at an
arrav of N sensors, the received signal vector

or the data vector _x) (9 is represented by
F= 2 s (03 (07D M

where, x(t)=[x0 (t),xl(t),...,xN_l(t)]T
is the received signal vector. s, (#) is the ilh
impinging signal. #7(#) is the additve white
gaussian noise (AWGN) at the array. And

2(0)=[a, (0),a,(00),...,an( 617

is the steering vector.

The array output is given by
e

y= w x (2)

Second, let us consider the conventional
LMS algorithm in which the beamforming
weights are updated as follows [11]:
— -— - "
w(n+D=wn)—pgx(n)e (n) 3)
Where
controls  the

¢ is the step size parameter, which
convergence speed of the

>
algorithm. x(#) is the received signal vector

at che nth snapshot. e(n) is the error
between the desired signal and the reference
signal or training signal defined by [11]

e(n) =d(n)— y(n) (4

Where d(#) is the training sequence.

In both proposed algorithms (ES~-LMSI
and ES-LMS2), based on the fact that y(#)
is confined in a finite set of symbols, the use
of training sequence is unnecessary. After
finding (%) by equation (2), we can perform
as follows:

y(7n) .onto discrete constellations,

denated as Pr[y(#)]

-Find the error by e(n)=Pr[y(»)]— y(»).
In order to improve the convergence speed

of the conventional LMS algorithms, the step

sizes used for the two proposed algorithms are

not constant but are varied as follows

-Prcject

~For ES-LMS1:
= pgexp(dl|x(n)e’ (n)l,) )
-For ES-LMS2:

e[ p TR Gl
FTRER TR M,

(6)

Where,

>
|| a||2 denotes the induced norm of the

vector —5. to and b ( b=0) are constants.
The two proposed LMS algorithms can be
summarized as follows:
a) ES-LMSI1 algorithm

1. Initialize

2o, b, w(0),n=0

2. Update weight vector, n = n + 1

Receive a new snapshot.

—H —
y(n)= w (n—1x(n)
Project  y(#n)
Prliy(»)].
e(n) =Pr{y(n)]— y(n)
Calculate the step size
p=upgexp(blix()e" (Wl,), as  in
equation (5)
wny=wn—1)—pux(n)e' (n)
3. Repeat until the weight vector converges.
b) ES-LMS2 algorithm
Perform the same as ES-LMSI1 algorithm,

except that the step size is calculated by
equation (6)

onto discrete constellations,

- *x
= gy explb [lx(n)e" (w)l,
0 [lx ()i,

1II. Convergence condition for the two
proposed algorithms

In order for the conventional LMS
algorithm to converge, the step size must
satisfy the following condition [11]

0< <1/ THR) N

— —-H .
Where R=FEx(n) x (n)] is the
correlation matrix of the vector signal in
equation (1). Therefore, in the two proposed

aigorithms, pg and b are chosen such that the

step sizes in equation (5) and (6) must satisfy
the condition (7). Theoretically, if the weight
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vectors of the proposed algorithms converge to
the optimum solution, the step sizes in
equations (5) and (6) will converge to the
constant . In practice, however, rather than
terminating on the optimum solution, the
weight vector _;)(n) compute by the LMS
algorithm executes a random motion around the
minimum point of the error performance surface
[12]. Consequently, the step size g given by
equations (5) and (6) is always larger than p,.
Therefore,

steady-state

in order to maintain the same
excess MSE as in  the

LMS algorithm g should be

chosen to be smaller than the constant step
size in the conventional LMS algorithm.

conventional

IV. Simulation results

Fig. 1
the two

illustrates the learning curves of
proposed  algorithms and the
conventional LMS-CM algorithm. The
simulation was carried out in the CDMA
environment using BPSK modulation. SNR was
kept at 0 dB. The channel is assumed to be
multi-path  Rayleigh fading channel with
AWGN. The processing gain is 64. The
number of users is 3. Besides, the velocity of
the mobile user is 80 km/h. The number of
multi-path is 30. The initial direction of arrival
(DOA) of the desired user is fixed. And the
carrier frequency is 900 MHz.

Average MSE

1
o 200 400 600 800 1000
Number of terations

Fig.1 Learning curves of ES-LMSI
algorithm (a), ES~-LMS2 algorithm (b),
and LMS-CM  algorithm (¢} in
Rayleigh fading channel with AWGN

As shown in Fig. 1, even though g is
chosen to be much smaller than the constant

the LMS-CM
ES-I.MS1  and

step size g of
(0.00005  for

algorithm
0.00001 for

ES-LMS2 compared with 0.0005 for LMS-CM),
the two proposed algorithms still converge to a
steady-state more rapidly than LMS-CM
algorithm.

Fig. 2 illustrates the BER performance
versus the SNR in the Rayleigh fading channel
with AWGN. The conditions for the simulation
are almost the same as those used in Fig. 1,
except that SNR is changed from 0 to 14 dB.
As can be seen from Fig. 2, BER of the two
proposed algorithms is nearly the same as that
of LMS-CM algorithm.

a1

BER

0001

0.000%

SNR (dB)

Fig.2 BER performance versus SNR for
ES-LMS1, ES-LMS2, and LMS-CM
algorithms in the Rayleigh {fading
channel with AWGN, number of
antenna elements are 6, number of

users are 3, processing gain is 64).

Mobi
B - T

Base

ctatinn

Fig. 3  Model for verifying tracking capability
of ES-LMS1 and ES-LMS2 algorithms

The model shown in Fig. 3 verifies the
tracking ability of ES-LMS1 and ES-LMS2
algorithm. In this simulation, as the mobile user
was in motion, the DOA of the desired user
was changed. The initial DOA of the desired

subscriber is 8y and is supposed to change by

an amount of A @ degree at every snapshot.
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Fig. 4 and Fig. 5 show the beam patterns
of the three algorithms after 2000 snapshots.
The conditions used for the simulation are
almost the same as those used in Fig. 1,
except that the SNR is 3 dB, the initial DOA

—50° the angle

change A6 is 0.02° and 0.04° for Fig. 4
and Fig. 5, respectively.

From Fig. 4 we see that the two proposed
algorithms are able to track and find the exact
DOA of the desired user after 2000 snapshots,

the main lobes are at —10°
LMS-CM shows an angle that
different from the actual DOA.

of the desired signal is

while the
is slightly

d¢B

-100 -80 -60 -40 -20 ] 20 40 &0 80 100
Angle (degree)

Beam patterns of ES-LMSI,
ES-LMS2, and LMS-CM algorithms in
Rayleigh fading channel with AWGN.

Fig. 4,

Fig. 3 gives us a clearer proof to the tracking
capability of ES-LMS1 and ES-LMS2. After
2000 snapshots, ES-LMS1 and ES-LMS2 still
show the exact DOA of the desired user

(+30% LMS-CM very
different angle from the real DOA ( —129).

while shows a

dB

-25 -~

100 40 60 40 20 O 20 4 e & 100
Angle (degree)

Fig5 Beam patterns of ES-LMSI,
ES-LMS2, and LMS-CM algorithms in
Rayleigh fading channel with AWGN.

V. Conlusions

In this paper we propose two novel blind
LMS algorithm (ES-LMS1 and ES-LMS2)
whose convergence rates are more dramatic

than that of the conventional LMS-CM
algorithm, thus resulting in a very good
capability of tracking the desired signal.

Furthermore, because of exploiting the finite
constellation property of digital signal, the two
proposed algorithms are applicable not only for
BPSK modulation but also for other modulation
techniques such as QPSK or QAM. Thus,
ES-LMS1 and ES-LMS2 are good choices for
real time smart antenna applications.
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