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Abstract Recently a constant-norm constraint equation-
error method was proposed to solve the bias problem in
adaptive [IR filtering. However, the method adopts a fixed
step-size and thus results in slow convergence for a small
step-size and significant misadjustment error for a large
step-size. In this paper, we propose a variable step-size
(VSS) algorithm that greatly improves convergence
properties of the constant-norm constraint equation-error
method. The analysis and the simulation results show that
the proposed method indeed achieves both fast convergence
and small misadjustment error.

L Introduction

Adaptive IIR filtering methods are classified into two
categories: equation error method and output error method
{1]. Equation error method has been preferred to output error
method, because it has more attractive characteristics such
as the quadratic error surface, global convergence, and
guaranteed system stability. However, equation error method
has a shortcoming that it may generate biased coefficient
estimates in the presence of noise. So many debiasing
methods [2]-[3] have tried to solve this problem.

Recently the constant-norm equation-error method [2]
was proposed. The method has achieved the bias free
coefficient estimates with a constant norm constraint. But
this method has limits due to a fixed step-size. When the
step size is small, the convergence speed becomes slow.
Conversely when the step size is large, the misadjustment
error increases.

To overcome the limits, a variable step-size (VSS)
equation-error method is proposed for the constant-norm
equation-error method. The proposed VSS method is
motivated by the fact that the angle between a gradient
vector and a denominator coefficient vector becomes smailer
as the filter coefficients reach the optimal solution. The
gradient vector and the coefficient vector are projected onto
an arbitrary vector. Then as a measure of the closeness
between estimated filter coefficients and the optimal solution,
we use the norm of the difference vector between two
projection vectors. According to the measure, the step size is

chosen. Simulation results show that the proposed VSS
method indeed achieves both fast convergence and low
misadjustment error.

The remainder of this paper is organized as follows.
Section II briefly describes the constant-norm equation-
error algorithm. Then Section III analyzes the stationary
condition in the constant-norm equation-error algorithm and
derives the proposed algorithm. Section IV evaluates the
performance of the proposed algorithm in comparison with
the constant-norm equation-error algorithm by computer
simulation. Finally conclusions are presented in Section V.

II. Constant-norm Equation-error Algorithm

An equation error adaptive IIR filter in the system
identification configuration is shown in Fig.1. Suppose that
the unknown system H(z) is stable and causal represented

by a rational system function
B_(z_)_= Zf:obkz—k (1)
A(2) Zf:oalz‘l .

The relationship between the input and output signals for
the unknown system H(z) can be written as

H(z)=

Y(”)=—l'(§bkx("—k)“ ial.)’("‘l)) 2)
agy \k=0 I=1

where x(r) is the input signal. When the output y(n) is
corrupted by additive noise, the observed output or the
desired signal is given by

d(n)=y(n)+\(n) 3)

where (n) is white measurement noise with variance

Of and is independent of the input. The conventional
equation error IIR filtering algorithm has a shortcoming that
generate biased coefficient estimations in the presence of
noise. In order to remove this bias, the constant-norm
equation-error algorithm was proposed [1]. The constant-
norm equation-error 1IR filter has two FIR filter outputs

w(n) =d" (n)a “
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Fig.1 Equatlon error adaptlveIIR filter in the system identification
configuration
and

u(n)=x"(n)b )
where &7 <[t 4 - a]67=5 & - ]

d'(m=[d@n) d@r-1 - d@n-L) and
X(=[xn) x(a-1) -+ xn-k)} Then the equation error
e(n) and mean square error (MSE) can be represented as

e(n) = w(n) — u(n) =d’ (n)a - x” (n)b (6)
and
()= LY (9a—¥ (b )+ 21 +5) ™

where y"(m)=[y(n) y(n-1) - yn-D)]
From (7), we can know that 01(14_2;42) introduces an
=)

undesirable bias that depends on the noise power. To solve
the problem the constant- norm equation-error algorithm
uses the constant-norm constraint
L
(1+£)-c ®
1=l
where C >1. A bias-free solution is obtained by MSE
minimization subject to (8). The augmented cost function,
with the constant-norm constraint, using Lagrange
multiplier 4, is given by
_E[E(m]+A(C-2"a)
J= 2 : ©)
Finally using LMS adaptive method, the updating equations
is as follows:

a(n+1) = (n)- ﬂ.,e(n)(d(n) _P_:Mﬁ(,,)) (10)
p a(n)
and
b(n+1) = b(r) + p,e(n)x(n) (1n

where #; and H are the step size for the FIR filter
Az) and B(z), respectively. The sifting vector P is an
arbitrary vector which satisfies p"a(n)=#0. The detail
description is given in [2].

I1. The VSS Constant-norm EE Algorithm

We apply VSS technique to the ;1(2) FIR filter under a

constant-norm constraint and g, = 1. On the other hand,
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Fig.2 (a) Orthogonality of the gradient of MSE and

span (L A(n)) (b) Projection length L(n) onto span (L p)

a fixed step size method is still applicable for the [}(z)
FIR filter.

A .VSS algorithm

Firstly we investigate characteristics of stationary point in
constant-norm equation-error algorithm. Let us define a
gradient of MSE with respectto a(n) as

_SE[€'(m)]
&= "aam (12

Then the derivative of J with respect to a(s) is given
by
& _10Ee’(m)] _p"Eld(me(n)] .

—= = = (n)
da(n) 2 oa(n) p a(n)
1 p” Eld(n)e(n)] - a3
= Egi(") -———a(n) )
p'a(n)
At stationary point, i.e., &//di(n)=0, it follows that
1 _ p’E[d(m)e(m)] -
5 8 = —prﬁ(n) a(n) (14)

Let us define span( a(n)) @s any vector that is orthogonal

to a(n) . By multiplying span(La(n)) both sides, we get
g’ -span(La(n))=0, (15)

a(n)

since a’(n)-span(La(n))=0 . Therefore, at stationary

point a gradient vector is orthogonal to vectors in

span(La(n)). Froma geometric perspective, the condition in

(15) can be illustrated in Fig.2 (a).

When the condition in (15) is satisfied, &, and

%Z‘"; a(r) coincides because the two vectors have the same
n

direction and the same length. So the projection vectors of
&» and Nf—z‘"—;”i(n) onto the space spanned by span(lp)
n

becomes the same one. Therefore the difference vector of
two projection vectors can be used as the estimation of the
closeness between the estimated parameter 4(n) and its

optimal solution. In other words, the length of the
difference vector is used as a criterion for the step size

selection of M In Fig2 (b), m represents

8y
i)

(ﬁ(”) _2(me p] and n represents

[ell




T
(g“,)-%‘;,‘,’,lp). With m and n, the length of the

difference vector L(n) is given by
U=fm-of

il [~ T e . 16

This fact is illustrated in Fig.2 (b).
Employing the LMS algorithm, the instantaneous
gradient vector is given by

834y = 260)) an
where pa. V=g,

Because we cannot know exact expectation of é;(,,), we

approximate it by first-order recursive estimation method.
The first-order recursive estimation is given by

Biey = By + Q _a)éi(n) (18)
where a is the forgetting factor (O<a<1). Then

&3(n) can approximate 5], As a is chosen to be

close to 1, E;, becomes closer to Etﬁa(n)l. By using the
estimated gradient vector in (18), the estimated projection
length I:(n) is given by

oo JEel () wem ) (- El]} . (19)
e M{“ W ") {“" W

Based on L), we determine the 4() within the range
Hoin S 14, (M) < pina, . Let us exploit the linear method in the
step size selection. We first determine the upper bound
L, and the lower bound L, of the projection length.
Then, the step size of the VSS constant-norm equation-
error algorithm is set as

Hos ELM)<L,
Ha() = By i L) > L, 20)

Hon Lo = Boin . (f(n)- L, )»otherwise
Lmn = me

where I, > 1, >0.
B. A family of VSS algorithm

By choosing P appropriately, various efficient VSS
constant-norm constraint equation-error can be derived. In
this section, we give two examples.

Example 1 - one choice is P =a(n) . As shown in Fig.2
(b), when pis equal to 3(s), m becomes 0 and thus the

projection length Ln) becomes

@n
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Fig.3 Plots of the norm squared parameter error (p = ﬁ(n))

In this case, the proposed VSS method becomes the same
as the VSS QCEE method in [4]. The VSS QCEE method
corresponds to the one special case of wvarious VSS
constan{-norm equation-error families.

Example 2 - Another possible choice for the sifting

vector is P=[l 0 -~ 0] . Let us represent By as
Z, 8 & Z.]. Then the estimated projection length

f.(n) is given by

el v o
Loy = = Gmw-p) G z.,p*. 22

IV. Simulation Results

The simulation results are presented to show that the
proposed method indeed achieves both fast convergence
and small misadjustment error. The constant-norm
equation-error algorithm with fixed step size is chosen for
comparison of convergence speed and estimation accuracy.

The unknown system is given by

1-0.5z"

1-1.027 +0.527 ~
The gain 7 is chosen such that y(n) has unit power and it

is chosen to 5=0.8465 in simulations. The initial

H(z)=n

parameters are set to a’(©)=l 0 0] and B’®)=p ¢} in
the simulation. Also, the initial values of 4D and 8y,

are set to 4, (0=t and By =9. The input signal is a

white, zero-mean, Gaussian random sequenice with unit
power, and the measurement noise signal is additive white
Gaussian with power 0.1. The squared norm of the

parameter estimation errot, |aa(s)[ +ub-—l;(n)“1 is taken and
averaged over 30 independent trials, We fix the parameters
as M, = 0.0001 ,a = 0.999

The simulation results are shown in Fig.3 and Fig4. In
Fig.3 we use the sifting vector p=4a(n) and we set the

parameters in VSS algorithmas g, = 0.00008
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Fig.4 Plots of the norm squared parameter error {p=[l 0 0)

Hoan =0.004 | L. =0045 and L, =006 . For the
comparison purpose the results of the constant-norm

equation-error  algorithm  with H,=0004  and

#, =0.00008 are given in the plot (b) and the plot (c),
respectively. The result of the proposed method is given in
the plot (a). Although there is a trade-off between
convergence speed and misadjustment error for the fixed
step size, the proposed VSS method has fast convergence
and small misadjustment error.

In Fig.4 we use the sifting vector P =t o 0] and we
set the parameters in VSS algorithm as Hny =0.0001

Homy =0.003 | L =0035 and L, =007 | For the
comparison purpose the results of the constant-norm

equation-error algorithm with 4, =0.003 and 4, =0.0001
is given in the plot (b) and the plot (c), respectively. The
result of the proposed method is given in the plot (a). As
expected, similar results with Fig.3 are obtained.

V. Conclusions

We have proposed the VSS constant-norm equation-error
adaptive algorithm. The proposed method shows fast
convergence speed and small misadjustment error. Also, the
proposed algorithm has a great degree of freedom for
algorithm selection because of free choice of p. By
choosing the sifting vector appropriately, the more efficient
and stable VSS constant-norm constraint equation-error
algorithms can be derived.

Acknowledgments
The authors wish to acknowledge that his work has been
partially supported by BK21 program from Ministry of
Education, Republic of Korea.
References

{11 J. J. Shynk, “Adaptive IR filtering,” JEEE Acoust.,
Speech, Signal Processing Mag., vol. 6, pp. 4-21, 1989.

[2] H.-C. Shin and W.-J. Song, “Bias-Free Adaptive IR
Filtering,” IEICE Trans. Fundamentals, vol. E00-A, pp
1273-1279, no. 5, May 2001.

[3] K. C. Ho and Y. T. Chan, “Bias removal in equation-error
adaptive IIR filters,” IEEE Trans. Signal Processing, vol.
43, pp. 51-62, Jan. 1995.

[4] P. L. Hsu, T. Y. Tsai, and F. C. Lee, “Applications of a
Variable Step Size Algorithm to QCEE Adaptive IIR
Filters,” IEEE Trans. Signal Processing, vol. 48, no. 1, pp.
250-254, Jan. 2000.

_94_



