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Flow Visualization of Chaotic Mixing in a Single Screw Extrusion Process
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Introduction

In this study, we present experimental flow-visualization results and comparative numerical
investigations on chaotic mixing in the Chaos Screw (CS) system. The objective of the study
is to verify existence of dynamical structures by identifying their three-dimensional
configurations and to see sequential growing and destruction of them according to the
perturbation strength . (Refer to Hwang & Kwon [1-2] for detailed description of the CS
system, related theories and dynamics; see also Hwang et al.[3] for the extended form of this
study.) An experimental apparatus will be described first and three-dimensional flow
visualization results are to be shown. Then, periodic structures and the effect of perturbation
on the dynamical structures of the CS system are explained using three-dimensional
experimental deformation patterns. In the comparative numerical study, we indicate how the
observed phenomena in the experiments can be verified and explained by the full three-
dimensional numerical simulations. The numerical results show more detailed structures

including weak small-scale resonance structures and variety of KAM tori structures.

Experiments
(i) Setup

In experiments, we designed and made a simulator that visualizes three-dimensional mixing
patterns in the CS channel. Fig. 1 indicates schematic diagram of the simulator and a real
picture of the experimental setup. The simulator is composed of four main parts; i)
transparent grooved channel and core barrier parts with various perturbation values, ii) the
motor-driven oblique slider with AC motor and chains, iii) two fluid reservoirs, a valve and a
drain to maintain a constant flow rate, and iv) two CCD cameras and an image grabbing

system.
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Fig. 1 Schematic diagram (left) and real setup (right) of experimental apparatus.

Working fluid is 1000cs silicone oil (Shinetsu Silicone Co., Japan), a high viscous
Newtonian fluid. Viscosity p is 0.974 Pa-sec and density is 0.967 g/cm®. The dye material
used in the experiment is also blue-colored 1000cs silicone oil (KE BL70) manufactured by
the same company. Viscosity and density of dye are the same as the working fluid. Thus we
expect neutrally buoyant distributive mixing patterns in the experiment. Using the
characteristic velocity V3 and the characteristic length scale H, the Reynolds number Re in
the experiment can be expressed and evaluated as Re= pV,H / u =1.462.The Reynolds
number of O(1) has been known as the best compromise to avoid both dye diffusion and
inertial effect [4].
(ii) Resonance band of period 1/2

Identifying periodic structures from the deformation patterns is not an easy task especially in
the three-dimensional systems, since they are superposed (subharmonic) motions. The
resonance band is a representative periodic structure and, by its definition, is a banded region
(an annulus in 3D) where most of the orbits have the same rational winding number. We say
“most”, because there can be some transports into or out of the resonance band. But these
transports are very slow process and cannot be found in the relatively small finite-time (or
finite-period) experiment. Hence, we can say that all the orbits in the resonance band have
the same frequency in the experiment so that the deformation patterns in the region should be
invariant at all the periods. Let us investigate experimental results shown in Fig. 2 where the
corresponding value of perturbation strength is 0.025. The deformation patterns near the
rotation center remain unchanged and are perfectly identical. One can say that the time-
periodic structure found in the cross-sectional patterns must be a resonance band, because the

deformation patterns remain unchanged only in the resonance band. Recall that, as time goes
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on, one never obtains the same deformation patterns in the nonlinear rotation at any period,
because two neighboring stream surfaces always have different periods. The only possibility
of having periodically invariant pattern is that there is a “linearly rotating” annulus that

encloses the pattern, and this is definitely the resonance band.

(a) =19+1/15 sec. (b) =21+6/15 sec. (c) t=23+12/15 sec.

(d) t=26+3/15 sec. (e) t=28+8/15 sec. (f) t=30+14/15 sec.
Fig. 2 Continuous cross-sectional deformation patterns that indicate a periodic structure with

period t=2.3 (approx.).

(iii) Effect of perturbation strength
One can expect smaller KAM torus and larger chaotic region to be present and resonance
band to be destroyed, as the strength of perturbation increases. Cross-sectional deformation
patterns under 6 distinct perturbation values B after 30 seconds are shown in Fig.3. It is
evident that, as the perturbation increases, chaotic region expands its size and simultaneously
the KAM torus shrinks. As mentioned earlier, KAM torus can be identified by the empty
region in the right side of barrier and, at the same time, the colored region in the right side

indicates chaotic region due to homoclinic tangle. The results are summarized in Figure 4.

(b) B =0.025

(d)p=0.15 (e)p=02 Hp=03

Fig. 3 Cross-sectional deformation patterns that indicate the effect of perturbation strength .

Numerical Stud
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Numerical investigations of chaotic dynamics in CS have been studied through Poincaré
section methods. To obtain the Poincaré sections, we evaluated perturbed velocity fields and
then integrated them with respect to time using the 4th order Runge-Kutta method [2]. We
studied four small perturbed cases: (a) f=0.025, (b) p=0.1, (c) p=0.15 and (d) B=0.2. The

values are selected for comparison to the experimental results.
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Fig. 4 Poincaré sections for B=0.1: (a) Cross-sectional Poincaré section; (b) Longitudinal
Poincaré section
In Fig.4, the associated elliptic points of the period-1/2 resonance band are clearly shown.
From the longitudinal Poincaré section (Fig.4b), the four elliptic dead spots are arranged in a
completely periodic manner such that two dead spots above the KAM torus and the other two
dead spots below the KAM torus. Taking any 2-centimeter-long unit in the longitudinal
direction, one can obtain completely periodic structure: The unit has one elliptic point each

above and below the largest KAM torus.
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