퍼지 계수를 갖는 미분 시스템에 대한 퍼지 해의 존재성

The existence of the fuzzy solutions for the differential system with fuzzy coefficient

손기도*, 강점란**, 이부영***, 박용범**** 부산시 사하구 하단동 동아대학교 수학과.

K. D. Son*, J. R. Kang**, B. Y. Lee***and Y. B. Park****

*Dept. of Mathematics, Dong-a University, Busan 604-714, Korea,

**Dept. of Mathematics, Dong-a University, Busan 604-714, Korea, pointegg@hanmail.net,

***Dept. of Mathematics, Dong-a University, Busan 604-714, Korea, bylee@daunet.donga.ac.kr.

Pusan 608-737, Korea

parkyb@pknu.ac.kr

ABSTRACT

In this paper, we study the existence of fuzzy solution for the following differential system with fuzzy coefficient using the different two methods:

$$\begin{cases} \dot{x}_1 = \tilde{a} \ x_2, \\ \dot{x}_2 = \tilde{b} \ x_1, \end{cases}$$

where \widetilde{a} , \widetilde{b} is the fuzzy natural number generated by fuzzy number $\widetilde{1}$. The α -level set of the fuzzy number $\widetilde{1}$ is $[\widetilde{1}]^{\alpha} = [\widetilde{1}_{l}^{\alpha}, \widetilde{1}_{2}^{\alpha}]$. The α -level set of \widetilde{a} is $[\widetilde{a}]^{\alpha} = [a \cdot 1_{l}^{\alpha}, a \cdot 1_{r}^{\alpha}]$ and α -level set of \widetilde{b} is $[\widetilde{b}]^{\alpha} = [b \cdot 1_{l}^{\alpha}, b \cdot 1_{r}^{\alpha}]$.

Keywords and Phrases: fuzzy number, fuzzy solution, α -level set, fuzzy process

1. Introduction

The concept of the natural number is esaily extended to fuzzy case by max-min convolution. Let $\tilde{1}$ be a fuzzy number in R^+ with the following membership function.

$$\forall x \in \mathbb{R}^+$$
, $\mu_{\widehat{1}}(x) \in [0,1]$ and $\mu_{\widehat{1}}(1) = 1$.

We now proceed with the successive construction of fuzzy numbers as follows;

$$\hat{2} = \hat{1}(+)\hat{1}, \quad \hat{3} = \hat{2}(+)\hat{1}, \quad \cdots,$$

 $\tilde{n} = (n-1)(+)\hat{1}, \cdots.$

Let us define the α -cut for the fuzzy number

 $\tilde{1}$ as follows. $[\tilde{1}]^{\alpha} = [\tilde{1}_{l}^{\alpha}, \tilde{1}_{r}^{\alpha}], \alpha \in [0, 1].$

It is constructed from 1 by the use of the intervals of confidence of level α .

$$[\widetilde{2}]^{\alpha} = [\widetilde{1}]^{\alpha} + [\widetilde{1}]^{\alpha} = [2 \cdot \widetilde{1}_{l}^{\alpha}, 2 \cdot \widetilde{1}_{r}^{\alpha}]$$
$$= 2[\widetilde{1}_{l}^{\alpha}, \widetilde{1}_{r}^{\alpha}]$$

$$[\widehat{3}]^{\alpha} = [\widehat{2}]^{\alpha} + [\widehat{1}]^{\alpha} = [3 \cdot \widehat{1}_{l}^{\alpha}, 3 \cdot \widehat{1}_{r}^{\alpha}]$$
$$= 3[\widehat{1}_{l}^{\alpha}, \widehat{1}_{r}^{\alpha}],$$

...

$$[\widetilde{n}]^{\alpha} = [\widetilde{n-1}]^{\alpha} + [\widetilde{1}]^{\alpha} = [n \cdot \widetilde{1}_{l}^{\alpha}, n \cdot \widetilde{1}_{r}^{\alpha}]$$
$$= n[\widetilde{1}_{l}^{\alpha}, \widetilde{1}_{r}^{\alpha}].$$

We now call the fuzzy natural number genera ted by fuzzy number \tilde{I} . We define the multi plication by the fuzzy number for the real ma

trix. If
$$\tilde{a}$$
 is fuzzy number, $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$

where
$$a_{ij} \in R$$
 then $\tilde{a} \cdot A = \begin{pmatrix} \tilde{a} \cdot a_{11} & \tilde{a} \cdot a_{12} \\ \tilde{a} \cdot a_{21} & \tilde{a} \cdot a_{22} \end{pmatrix}$

In this paper we consider the solution of following differential equations with fuzzy coefficients using two different methods

(F.D.E.)
$$\begin{cases} \dot{x}_1 = \tilde{a} x_2, \\ \dot{x}_2 = \hat{b} x_1. \end{cases}$$

where \tilde{a} , \tilde{b} is the fuzzy natural number generated by fuzzy number $\tilde{1}$.

II. First method

We consider the following differential equations with fuzzy coefficients

(F.D.E.)
$$\begin{cases} \dot{x}_1 = \tilde{a} x_2, \\ \dot{x}_2 = \tilde{b} x_1, \end{cases}$$

where \tilde{a} , \tilde{b} is the fuzzy natural number generated by fuzzy number $\tilde{1}$.

We can be expression as follows:

$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} 0 & \hat{a} \\ \hat{b} & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \hat{1} \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

We find the eigenvalues and eigenvectors of

$$\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix}$$
.

To expand the determinant in the character istic equation

$$\det(A - \lambda I) = \begin{vmatrix} -\lambda & a \\ b & -\lambda \end{vmatrix} = 0$$

It follows that $\lambda^2 - ab = 0$ Hence the eigenvalues are $\lambda_1 = \sqrt{ab}$, $\lambda_2 = -\sqrt{ab}$. To find the eigenvectors we must now reduce

 $(A-\lambda I)K=0$ two times corresponding to the two distinct eigenvalues.

For $\lambda_1 = \sqrt{ab}$ we have

$$\begin{pmatrix} -\sqrt{ab} & a \\ b & -\sqrt{ab} \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

And solve the following equation:

$$-\sqrt{ab}k_1+ak_2=0$$

where zero fuzzy number $\hat{0}$ satisfies

$$\sqrt{ab}\,k_1-\sqrt{ab}\,k_1=\hat{0}\,.$$

Thus we see that $k_2 = \frac{\sqrt{ab}}{a} k_1$. Choosing

 $k_1 = \sqrt{ab}$ $\hat{1}$ we get the eigenvector

$$K_1 = \tilde{1} \begin{pmatrix} \sqrt{ab} \\ b \end{pmatrix}$$

For $\lambda_2 = -\sqrt{ab}$

$$\begin{pmatrix} \sqrt{ab} & a \\ b & \sqrt{ab} \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

And solve the following equation:

$$\sqrt{ab}\,k_1 + a\,k_2 = \tilde{0}$$

where zero fuzzy number $\hat{0}$ satisfies $\sqrt{ab} k_1 - \sqrt{ab} k_1 = \hat{0}$.

Thus we see that $k_2 = -\frac{\sqrt{ab}}{a} k_1$

Choosing $k_1 = \sqrt{ab}$ 1 then yields the second

eigenvector
$$K_2 = \tilde{1} \begin{pmatrix} \sqrt{ab} \\ -b \end{pmatrix}$$

Hence we know that the fuzzy solution of (F.D.E) is given by

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 K_1 e^{\lambda_1 t} + c_2 K_2 e^{\lambda_2 t}$$

$$= c_1 \tilde{1} \begin{pmatrix} \sqrt{ab} \\ b \end{pmatrix} e^{\sqrt{ab}t} + c_2 \tilde{1} \begin{pmatrix} \sqrt{ab} \\ -b \end{pmatrix} e^{-\sqrt{ab}t}$$
$$= \tilde{1} \begin{pmatrix} c_1 \begin{pmatrix} \sqrt{ab} \\ b \end{pmatrix} e^{\sqrt{ab}t} + c_2 \begin{pmatrix} \sqrt{ab} \\ -b \end{pmatrix} e^{-\sqrt{ab}t} \end{pmatrix}.$$

The α -level set of x_1 and x_2 are

$$[x_{1}]^{a} = [(c_{1}\sqrt{ab}e^{\sqrt{ab}t} + c_{2}\sqrt{ab}e^{-\sqrt{ab}t}) \hat{1}_{l}^{a},$$

$$(c_{1}\sqrt{ab}e^{\sqrt{ab}t} + c_{2}\sqrt{ab}e^{-\sqrt{ab}t}) \hat{1}_{r}^{a},]$$

$$[x_{2}]^{a} = [(c_{1}be^{\sqrt{ab}t} - c_{2}be^{-\sqrt{ab}t}) \hat{1}_{l}^{a},$$

$$(c_{1}be^{\sqrt{ab}t} - c_{2}be^{-\sqrt{ab}t}) \hat{1}_{r}^{a}].$$

III. Second method

We consider the following differential equations with fuzzy coefficients:

(F.D.E.)
$$\begin{cases} \dot{x}_1 = \tilde{a} x_2, \\ \dot{x}_2 = \tilde{b} x_1, \end{cases}$$

where \tilde{a} , \tilde{b} is the fuzzy natural number generated by fuzzy number $\tilde{1}$.

For $\alpha \in [0,1]$, we can be expression as follows

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & \begin{bmatrix} \tilde{\alpha} \end{bmatrix}^a \\ \begin{bmatrix} \tilde{b} \end{bmatrix}^a & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

where $[\widetilde{a}]^a = [a \cdot \widetilde{1}_l^a, a \cdot \widetilde{1}_r^a]$,

$$[\widetilde{b}]^{\alpha} = [b \cdot \widetilde{1}_{l}^{\alpha}, b \cdot \widetilde{1}_{r}^{\alpha}].$$

First, for each $\alpha \in [0,1]$ we consider the equation

$$\begin{pmatrix} \dot{x}_{1l}^{a} \\ \dot{x}_{2l}^{a} \end{pmatrix} = \begin{pmatrix} 0 & a \cdot \widetilde{1}_{l}^{a} \\ b \cdot \widetilde{1}_{l}^{a} & 0 \end{pmatrix} \begin{pmatrix} x_{1l}^{a} \\ x_{2l}^{a} \end{pmatrix}.$$

We find the eigenvalues and eigenvectors of

$$\begin{pmatrix} 0 & a \cdot \widetilde{1_{I}^{\alpha}} \\ b \cdot \widetilde{1_{I}^{\alpha}} & 0 \end{pmatrix}.$$

From the characteristic equation we obtain the real eigenvalues

$$\lambda_1 = \sqrt{ab} \, \widetilde{1}_l^{a} , \quad \lambda_2 = -\sqrt{ab} \, \widetilde{1}_l^{a} .$$

For $\lambda_1 = \sqrt{ab} \, \widetilde{1}_l^{\alpha}$ we have

$$\begin{pmatrix} -\sqrt{ab} & \hat{1}_{l}^{a} & a \cdot \hat{1}_{l}^{a} \\ b \cdot \hat{1}_{l}^{a} & -\sqrt{ab} & \hat{1}_{l}^{a} \end{pmatrix} \begin{pmatrix} k_{1} \\ k_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

And solve the following equation:

$$-\sqrt{ab} \ \hat{1}_{l}^{a} k_{1} + a \cdot \hat{1}_{l}^{a} k_{2} = 0$$
.

Choosing $k_1 = \sqrt{ab}$ we get the eigenvector

$$K_1 = \begin{pmatrix} \sqrt{ab} \\ b \end{pmatrix}$$
.

Similarly, for $\lambda_2 = -\sqrt{ab} \, \widetilde{1}_I^a$ yields the second eigenvector

$$K_2 = \begin{pmatrix} \sqrt{ab} \\ -b \end{pmatrix}$$

Hence the solution is

$$\begin{pmatrix} x_1^a \\ x_2^a \end{pmatrix} = c_1 K_1 e^{\lambda_1 t} + c_2 K_2 e^{\lambda_2 t}$$

$$= c_1 \begin{pmatrix} \sqrt{ab} \\ b \end{pmatrix} e^{\sqrt{ab} \cdot \widehat{\Gamma}_1^a t} + c_2 \begin{pmatrix} \sqrt{ab} \\ -b \end{pmatrix} e^{-\sqrt{ab} \cdot \widehat{\Gamma}_1^a t}$$

Second, for each $\alpha \in [0,1]$, we consider the equation

$$\begin{pmatrix} \dot{x}_{1r} \\ \dot{x}_{2r} \end{pmatrix} = \begin{pmatrix} 0 & a \cdot \widehat{1}_{r} \\ b \cdot \widehat{1}_{r} & 0 \end{pmatrix} \begin{pmatrix} x_{1r}^{a} \\ x_{2r}^{a} \end{pmatrix}$$

We find the eigenvalues and eigenvectors of

$$\begin{pmatrix} 0 & a \cdot \widetilde{1}_r^{\alpha} \\ b \cdot \widetilde{1}_r^{\alpha} & 0 \end{pmatrix} .$$

Using the same method, the solution is

$$\begin{pmatrix} x_{1r}^{a} \\ x_{2r}^{a} \end{pmatrix} = c_1 \begin{pmatrix} \sqrt{ab} \\ b \end{pmatrix} e^{\sqrt{ab} \cdot \widehat{\Gamma}_r^a t} + c_2 \begin{pmatrix} \sqrt{ab} \\ -b \end{pmatrix} e^{-\sqrt{ab} \cdot \widehat{\Gamma}_r^a t}$$

The α -level set of x_1 and x_2 are

$$[x_{1}]^{a} = [c_{1}\sqrt{ab}e^{\sqrt{ab}} \hat{\Gamma}_{1}^{a}t + c_{2}\sqrt{ab}e^{-\sqrt{ab}} \hat{\Gamma}_{1}^{a}t,$$

$$c_{1}\sqrt{ab}e^{\sqrt{ab}} \hat{\Gamma}_{r}^{a}t + c_{2}\sqrt{ab}e^{-\sqrt{ab}} \hat{\Gamma}_{r}^{a}t] ,$$

$$[x_{2}]^{a} = [c_{1}be^{\sqrt{ab}} \hat{\Gamma}_{1}^{a}t - c_{2}be^{-\sqrt{ab}} \hat{\Gamma}_{1}^{a}t,$$

$$c_{1}be^{\sqrt{ab}} \hat{\Gamma}_{r}^{a}t - c_{2}be^{-\sqrt{ab}} \hat{\Gamma}_{r}^{a}t] .$$

IV. Example

Consider the fuzzy solution of the following differential equations with fuzzy coefficients generated by fuzzy number I

$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

where
$$\tilde{1} = [\tilde{1}_{l}^{\alpha}, \tilde{1}_{r}^{\alpha}] = [\frac{\alpha+1}{2}, \frac{3-\alpha}{2}],$$

 $\alpha \in [0,1].$

From the first method, we obtain the α -level set of the solution x_1 and x_2 are

$$[x_{1}]^{a} = [(c_{1}\sqrt{6} e^{\sqrt{6}t} + c_{2}\sqrt{6} e^{-\sqrt{6}t})(\frac{\alpha+1}{2}),$$

$$(c_{1}\sqrt{6} e^{\sqrt{6}t} + c_{2}\sqrt{6} e^{-\sqrt{6}t})(\frac{3-\alpha}{2})],$$

$$[x_{2}]^{a} = [(c_{1}3e^{\sqrt{6}t} - c_{2}3 e^{-\sqrt{6}t})(\frac{\alpha+1}{2}),$$

$$(c_{1}3 e^{\sqrt{6}t} - c_{2}3 e^{-\sqrt{6}t})(\frac{3-\alpha}{2})].$$

From the second method, we obtain the α -level set of the solution x_1 and x_2 are

$$[x_1]^{\alpha} = [(c_1\sqrt{6}e^{\sqrt{6}(\frac{\alpha+1}{2})t} + c_2\sqrt{6}e^{-\sqrt{6}(\frac{\alpha+1}{2})t}), \\ (c_1\sqrt{6}e^{\sqrt{6}(\frac{3-\alpha}{2})t} + c_2\sqrt{6}e^{-\sqrt{6}(\frac{3-\alpha}{2})t})], \\ [x_2]^{\alpha} = [(c_13e^{\sqrt{6}(\frac{\alpha+1}{2})t} - c_23e^{-\sqrt{6}(\frac{\alpha+1}{2})t}), \\ (c_13e^{\sqrt{6}(\frac{3-\alpha}{2})t} - c_23e^{-\sqrt{6}(\frac{3-\alpha}{2})t})].$$

V. References

- [1] P. Diamond and P. E. Kloeden, Metric space of Fuzzy sets, World scientific, (1994).
- [2] P. Diamond and P. E. Kloeden, Optimization under uncertaintly, Proceedings 3rd. IPMU Congress, B. Bouchon-Meunier and R. R. Yager, Paris, 247-249, (1990).
- [3] P. E. Kloeden, Fuzzy dynamical systems, Fuzzy Sets and Systems, 7, 275-296, (1982).
- [4] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24, 301-317, (1987).
- [5] A. Kaufmann and M. M. Gupta, Introduction to fuzzy arithmetic, Van Nostrand Reinhold, (1991).
- [6] Y. C. Kwun, J. R. Kang, S. Y. Kim, The existence of fuzzy optimal control for the nonlinear fuzzy differential system with nonlocal initial condition, Journal of Fuzzy Logic and Intelligent Systems, 10, No. 1, 6–11, (2000).
- [7] M. Mizumoto and K. Tanaka, Some properties of fuzzy numbers, North-Holland Publishing Company, (1979).

[8] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24, 319–330, (1987).