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How is kinship measured?

We each have two copies, or alleles, of a gene
— one from each of our parents. We pass on
one of these two to each of our children.

The coefticient of Kinship, 6, is the chance
that an allele chosen from one person is iden-
tical to an allele chosen from the other. It is
also the chance that a child of these two peo-
ple receives two identical copies of the same
gene, i.e. the inbreeding coefficient, F, of
the child.
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Consanguineous marriages

Marriages between relatives increases the chance
that a child receives two identical copies of a
gene. If these copies are deleterious, neither is
protected by the other, and the child may have
a medical handicap. From a collection of 38
studies of first-cousin marriages, a 4.4% de-
pression in survival from six months gestation
to age 10 years was found.

(Bittles and Neel, Nature Genetics 8:117, 1997.)
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Kinship coefficients

For people who are not inbred, meaning that
their parents were not related:

Relatives 0

Identical twins 1/2
Father-daughter 1/4
Brother-sister 1/4
Grandmother-grandson 1/8
Brother-half sister 1/8
Aunt-nephew 1/8
Double first cousins 1/8
First cousins 1/16
First cousins once removed 1/32
Second cousins 1/64
Unrelated 0
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Evolutionary relationship

A person cannot have all ancestors different
for the last 30 generations (1200 AD) as 230
is 1 billion and there were only half a billion
people in 1200.

The fact that the number of distinct ancestors
we have is limited by historical population sizes
means that any two people have some degree
of relationship.

If a population is kept at the same size N, then
relative to some reference point ¢t generations
ago, O = t/2N.

Historically the human population has had an
average effective size of about 100,000. There
have been about 5,000 — 10,000 generations
since modern humans are thought to have moved
out of Africa. Might expect 8 between 0.025

and 0.05.
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Estimates of 6

Cavalli-Sforza et al. published “The History
and Geography of Human Genes" in 1994. Their
average estimates of 8 were:

Region )

Sub-Saharan Africa 0.035
East Asia 0.025
Southeast Asia 0.035
Asia (India) 0.028
Europe 0.016
South America 0.059
New Guinea 0.039
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Kinship coefficients
For people in a population where people in dif-

ferent families have an evolutionary relation-
ship of 8 = 0.025:

Relatives g

Identical twins (1+8)/2=051

Father-daughter (1+4360)/4=0.27
Brother-sister (1+36)/4=0.27
Grandmother-grandson (1+76)/8=0.147
Brother-half sister (1+76)/8 =0.147
Aunt-Nephew (1+76)/8 =0.147
Double first cousins (14+70)/8 =0.147

First cousins (1+156)/16 = 0.086
First cousins once removed (1 + 318)/32 = 0.055
Second cousins (14 636)/64 = 0.032
* Unrelated” 6 = 0.025
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Compare “fixed" populations with means.

Compare “random” populations with variances.

Assuming Hardy-Weinberg, compare two sets
of allele counts by exact test with permutation
procedure.
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Two samples
Observed Sample 1 Sample 2 Total

A 6 6 12
Az 5 1 6
Az 1 1 2
Total 12 8 20

If both samples from the same population:

Expected  Sample 1 Sample 2 Total
Ay 12x2 =72 8xE=48 12
Az 12x5 =36 8xg5H=24 6
Az 12xZ =12 8x%=08 2
Total 12 8 20
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Exact test for comparing populations

Pr(sample I) = l'[(" )'H(pf,) L
121

= 6,5|1|P1P2P3

Pr(sample IT) = H(pu) h

Hz(n )I
8l

= GEmPiPP3

Under hypothesis that both samples from same
population, p's are equal and joint probability

is
121 8 \ 1260
(6!5!1!) (6!1!1!)”1 p2p3
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Exact test for comparing populations

If the two samples were from the same popu-
lation, or from two populations with the same
allele frequencies, the probability of the com-
bined sample is
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12'6'2lp 1°p3P3
The probability of the two samples, conditional
on the counts in the combined data set is,
therefore,

Pr(combined)

% 8!
probability = ﬂg_'T'TWI‘IF_

Is this small? Use permutation to find the pro-
portion of all pairs of samples with the same
total numbers of alleles that are as probable or
less probable than the observed samples.
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Common Definition of Fgr

Never a good idea to define a quantity of in-
terest by a statistic. It cannot then be a para-
meter, and its values depend on (for example)
the dimensions of the data.
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ANOVA layout for fixed populations

Assuming Hardy-Weinberg, so that allelic rather
than genotypic data analyzed. Indicator vari-
able z;; is for the jth allele from the ith popu-
lation. It is 1 when the allele is type A, and is
0 otherwise. Each sample frequency p4; unbi-
ased for population frequency pg4;.

SS between populations
=i _x2 5 54)2
Tim — 7 = Lini(Pai — Pa)
Expected MS
T—EI[& k1pai(1 — pas) + Tini(pai — 54)?)
SS within populations

. &Z; ~ -~
Tim1 ik of — Tigt = Tinabai(1 — fai)

Expected MS
}':—i(ﬁi—:_—ﬁZi kop4i(1 — pai)
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Within individuals within populations

For a particular poputation i, the chance that
an individual has two copies of allele A is

Pasi = p%i+ fipai(1 —pai
The quantity f; is the inbreeding coefficient
within that population. Hardy-Weinberg im-
plies that f; = 0. The allele frequency p4, is
for the particular population.
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Within individuals within populations

If Hardy-Weinberg is not assumed, need to
keep track of individuals. The indicator vari-
able is now z;; for allele k(= 1, 2) in individual
§(1,2,...,n;) in population i(1,2,...,7).

SS bzetween populations

I; 12

Yign; ~ 2n

= i ni(Pai — Pa)?

SS between individuals within populations
zZ z? '

i3 —Lizm;

= Tini(Pai + Pani — 20%;)

SS between allelgs within individuals
gl

SijkThr — Sig &

= T;ni(Pai — Paai)

Wwithin individuals within populations

Taking expectations over samples from this
specific set of populations:

Expected MS between populations: -1;[5; k1pai(1-
Pai) + Zini(pai — Pai)?]

Expected MS between individuals within pop-
ulations: 1= ¥;(n; — 1)(1 + fi)pai(1 — pas)

n-r

Expected MS between alleles within individu-
als: 2 5ini(1 - £)pai(1 —pai)

It might be assumed that the f; were all the
same. Still a fixed population approach.
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Within individuals over all populations

Averaging over populations, the chance that
an individual has two copies of allele A is

Pas = pi+Fpa(1-py)
The quantity F is the inbreeding coefficient for
the whole collection of populations. Hardy-
Weinberg in the entire population implies that
F = 0. The allele frequency p,4 is an aver-
age over all the populations. Now a random
population approach.
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Between individuals within populations

Averaging over populations, the chance that
two individuals in the same population both
have a copy of allele A is

Paa = p3+6pa(l—pa)

The quantity 8 is the coancestry coefficient for
the whole collection of populations (measures
relatedness of genes within populations rela-
tive to that between populations). A lack of
population structure implies that § = 0. The
allele frequency p4 is an average over all the
populations.
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Within vs. between Populations

There are differences among populations as a
consequence of the relatedness of individuals
within populations. The expression

F-0

F =10
shows that f = 0 is possible even if F and 8 are
not zero. Populations are different even if each

population is in Hardy-Weinberg equilibrium.
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ANOVA layout for random populations

For an analysis of allele frequencies, when each
population has same expected allele frequency:

SS between populations
r T z2
o <

i=1n;. n.

Expected MS between populations
pa(1 - p)[(1 - 6) + ncb]

SS within populatiogs

T 7y 2 I
Y1 X % Zlﬁt"

Expected MS within populations
raA(1—-pa)(1-6)
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Estimation of 4

Therefore

E(MSB — MSW)/n] = ps(1-pa)b

E[MSW + (MSB - MSW)/n] = pa(l —pa)

Unequal Sample Sizes

If the samples are of unequal size n;:

r

MSB = —— ¥ ni(Fai — $a)?
r-15
1 L - -
MSW = m'; nipai(1 — Pai)
Then
~ MSB - MSW

= MSB+ (nc— 1)MSW

so that
. MSB — MSW where
MSB + (n — 1)MSW 2
ne = ——(Yni- Ling
r—1 i Zi ng
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ANOVA structure
Estimation of ¢
,
Each allele gives an estimate of the form MSB = —— > (Pai— NG
rT— Py
~ _ Numerator =1 .
Denominator MSW = —— 5a:(1 — Dag
pr— i_E:jlpA.( Pai)

An overall estimate is obtained as the ratio of
the sums of these numerators and denomina-

tors.
§ — _aleles Numerators
T alleles Denominators

E(MSB) = pa(1—pa)I(1 —6)+nbl
E(MSW) = pa(1 —pg)(1-96)
The two mean squares will differ only when

6 # 0.
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ANOVA test for § =0

Li (Ph.D. thesis, 1996) showed that, if § =0

MSB 4 XG-1)
pa(l—pa) @ r-1
MSW
pa(l—pa)

MSB 4 X{-1)
MSW = r-—-1
For non-normal data, Boos and Brownie (Sta-
tistics and Probability Letters 23:183—-191, 1995)
showed that
+ - MSB 4 p(r-1)
T MsSw — r(n-1)
This could provide a test for Hp: 6 =0.

y @SN — 00

1, asn =+ o
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Moment estimator of 9

- MSB — MSW
~ MSB+ (n—1)MSW

When 8 # 0, Li (Ph.D. thesis, 1996) showed

that

2
X{(r-1)
r—1"

MSB d
pa(l1-p)1+(n—-1)8]
MSW »
pa(l-pp)(1-6)

MSB

F* = d
MSW

as n —+ oo

1, asn — o0

1+(n-1)8 ,
a6 (- XD
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Mean and Variance of Moment Estimator
of 6

The mean and variance of a chi-square variable
are the df and twice the df. So

vy = L+(-1)6
EF) = =7
o 2 (1+(n-1)8 2
Var(F)_r_1< o )
Now note that
g = -1
T F*4n-1
so that
2
E@B) ~ 0—1_9[("—1)0+1]
r—1 =
2
var@) ~ —2 [(l—o)l(n—1)0+1]]
r—1 n
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Confidence Interval for 6

A-o)(r-1),.

14 (n-1)8
Look for an 100(1 — a)% confidence interval,
based on the middle (1 — &) of the chi-square

~ xf,_l)

distribution. Write this interval as (L,U).
1-6r-1)_.

. = LL~————F"<U

0.95 Pr(L < Yy <U)

= Pr(0, <0<6y)
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Confidence Interval for ¢

o, = (r-1)F*-U
(r—-1V)F*+(n-1)U
= 1-— 1
i (G +3)
0, = (r—1)F*—-L
(r—-1)F*4+(n-1)L
1
1—

-1 -1({_@ 1
et (m + ;z)
For example, suppose r = 5,n = 100,84 = 0.01.

With 4 df, (L = 0.48,U = 11.1) for a 95%
interval. The 95% CI for ¢ is (-0.003, 0.173).
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Confidence Interval for ¢

If, instead,
(1 - 9) * -1
. A, ~ FT
14 (n— 1)0F r(n-1)
the CI becomes
o, = 1- 1 7 7 1
n—
=t (m + ;)
1
0y = 1-—

For example, suppose r = 5,n = 100, = 0.01.
With 4 and 396 df, (L = 0.36,U = 2.79) for
a 95% interval. The 95% CI for 6 is (-0.003,
0.044). Not as wide as the interval based on
the chi-square distribution.
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Genetic Distance
Distance between populations designed to mea-
sure time since they diverged. Must therefore

be based on a model of the divergence process.

Suppose two populations have allele frequen-
cies {p;} and {¢;}. Euclidean distances of the

form
d = 5 (-a)

are not based on an evolutionary model.
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Pure drift model

Now define coancestry 6 as the probability of
two alleles being identical by descent (having
a common ancestral allele). If mating is com-
pletely at random, within each population, the
coancestry coefficient ¢ behaves like:

1 1
Ory1 = 57V~+(1_2—1V)0t
so, if 8 = 0,
1
6 = 1-(1-35
In(1-0) = ¢in(1->2)
6 = t/2N

For small values of 8, it is approximately pro-
portional to time and so can serve as a measure
of distance.
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Trees of Populations

Suppose data are available from a series of
populations i. The indicator variable z;; ap-
plies to the jth allele from the ith sample:

{ 1 alleleis A

% = | 0 otherwise
Taking expectations over samples and over repli-

cates of the evolutionary process,
E(zij) = pa
E(zijziy) = pA+0ma(l—pa), G# 5
E(zijzgy) = pg+0wpa(l —pa), i 75
where 6; refers to population i and 6,y refers to

the population from which populations i and i’
diverged.
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Trees of Populations

The usual analysis of variance format for vari-
ation among and within populations is, when
n Is the sample size from the ith population of
r populations,

Mean Squares

MSA
MSw

Source d.f.
Among r-—1
within r(n—1)
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Trees of Populations

Can show that

E(MSA) = pa(l —pa)(1 —bw)
+ npa(1 — PA)(éw - 50)
E(MSW) = pa(1—pa)(1 —8u)

where

-

Ow —l o;
T

i=1
~ 1 L
b = ———r 0,
a r(r—1) i§1 ig&:i i
This leads to an estimate, independent of allele
frequencies, of

_ 6y —0,
A= 1-0,
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Trees of Populations

0g—~ S S S3 S4 Ss Se Sv Sg

A 4

Idealized evolutionary history
(A=ancestral, R=race, P=population,
S=subpopulation.)
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Trees of Populations

Populations &, 7. B = (Bu—8)/(1 — )

51,5, 0s 0p 21;:_:5

51,53 0s Or gi_,__oo:

81,855 0s A Gt
SuSnSy 05 A ==
51,82, 85 Os Gt 28, Sg‘-}f"_—zzaf‘

SuS2 85 8s 05 B ==
S 8285085 0 Metfpieh Sl
51,82,83,8:, 8Os W 7—?‘__7‘,’5%;'-‘1%?‘

Ss, 86, 57, S8
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Trees of Populations

Under a pure drift model, and if all populations
are of the same size N,

2N /. 2N
2N — 1\'P tp
Op = 1—(1-— ~
P ( 2N ) 2N
2N — 1\t  tg
05 = 1_(1_—) s
s 2N 2N
so that, if 84 is taken to be zero,
~ IS
Br = IN
ts—tp __ts— 1R
Bp = =

2N —tgp 2N
tgs—tp _ts—tp

Bs ™ SN~ N
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Trees of Populations

The f's therefore furnish estimates of time
since most recent common ancestral popula-
tion of each pair of populations and so serve
as the basis for reconstructing trees of popu-
lations. '

Note that this development has used moment
estimators. A more flexible approach is pro-
vided by modern methods of variance compo-
nent estimation.
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Human disease genes

Relatives who are affected by the same disease
are likely to share alleles at the disease locus. If
more pairs of relatives than expected also share
alleles at a marker locus, then that marker is
likely to be “linked” to the disease locus. If
the chromosomal location of the marker locus
is known, this may help to locate the disease
gene.

The expected occurrence of marker allele shar-
ing depends on the degree of relationship, as
well as the background evolutionary relation-
ship as measured by 8.
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Affected sib pair test

When the parents are drawn randomly from a
population characterized by coancestry 4, the
probability that sibs have the same marker geno-

type is

(603 +6%(1-0)(23+21) p})/4

+6(1-6*(4+7> g2+ pd)/2

1 1
+(- 9)3[4— + Ez':Pf

+5 (R - %Zpﬂ) /(1 +6)(1+26)
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NSWC .

qLoc
SAC

TASC
vice
WAC

FBIC
WAAB
FBIH
FBIB
QLDA
VICA
vicy

AFPC NSWC QLDC

.001
-000
.001
-000
.000
.000
.008
.012 .011
.014 .013
.023 .019
.0i8 .015
.026 .022

$3383888

.001
.001
.000
.001
.001
.009
.010
.016
.020
.016
.026

82283888

SAC TASC VICC

.07
027

011
.012
.018
.022
.016
.026

.007 .
011
.016
-019
.014
.022

WAC FBIC WAAB FBIH FBIB QLDA VICA

.011
.015
.021
.018
.026

L0141
.012
.014
.026
.020
-030

017
.028
L0156
.010
.019

.026

.019 .041

.018 .037 .000

.031 .041 .003 .000
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