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1. Introduction

An the
behavior of group cellular automata(briefly
CA) was studied by many researchers
([1], (5], (71, (9], [11)). The characteristic
matrix of group CA is nonsingular. But

analysis  of state-transition

the characteristic matrix of nongroup CA
is singular. Although the study of the
with

characteristic matrix has not received due

class of machines singular

attention. However some properties of

nonsingular CA have been employed in
several applications ([6], [8], [10], [11]).
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In this paper, e present a detailed analysis
of the
derived from a linear multiple-attractor CA
with two predecessor(briefly TPMACA) by
replacing the XORs at some (or all) of the

behavior of complemented CA

cells. Also, we give the specific features
displayed in the state-transition behavior
of the complemented CA C°
from inversion of next-state logic of
somef(or all) of the cells of a TPMACA

C. We call C’

C . Especially we investigate the behavior

resulting

the CA corresponding to

of the complemented CA which the
complement vector is an acyclic state
lying on some nonzero-tree as the

complement vector of a linear TPMACA.
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2. Background
A CA
interconnected cells arranged spatially in a

consists of a number of

regular manner {21, where the
state-transitions of each cell depend on
The CA

structure investigated by Wolfram can be

the states of its neighbors.
viewed as a discrete lattice of sites(cells),
where each cell can assume either the
value O or 1. The next state of a cell is
assumed to depend on itself and on its
two neighbors (3-neighbourhood
dependency). The cells evolve in discrete
time steps according to some deterministic
that

neighbourhood. In effect, each cell consists

rule depends only on logical
of a storage element (D flip-flop) and a
combinatorial logic implementing the next
state function.

If the next-state function of a cell is
expressed in the form of a truth table,
then the decimal equivalent of the output
is conventionally called the rule number
for the cell [2].

Neighbourhood state:111 110 101 100 011 010 001 000

Next state: 0 1 0 1 1 0 1 O (rule 90
Next state: 1 0 0 1 0 1 1 O (rulel50)
The top row gives all eight possible states
of the three neighboring cells (the left

ith ell, the 7th cell itself,
and its right neighbor) at the time instant

neighbor of the

t The second and third rows give the
corresponding states of the ith cell at
time instant f+1 for two illustrative CA

rules. On minimization, the truth tables for
the rules 60, 90, 102, 10, 204 and 240

result in the following logic functions,
where @ enotes XOR logic and ¢ ;(?
denotes the state of the ith CA cell at
the 7th time instant, g;-1(H and

g i+1 (D refer to the state of its left and

right neighbors.

rule 600 g,,(D= 4,..(0 D 4,09

rule 900 g,.,(D= g.:1() D g, ()
rulel02: g, (0= ¢.(0 D g, (P

rulels0: g, (0= 4, 1() @ aup D g.4::(D
rule204: g1 (0)= q.(0

rule240: g, (D= g, (D

Definition 2.1. [17] i) Linear CA: if the
next-state generating logic employs only
XOR logic, then the CA is called a linear
CA:
CA.
ii) Complemented CA: Complemented CA
employs XNOR logic for one or more CA

otherwise it is called a non-linear

cells.
i) Group CA: A CA is called a group
CA if all the states in its state-transition
diagram lie on cycles, otherwise it is
referred to as a non-group CA.

iv) Reachable state’ In the state-transition
diagram of a non-group CA, a state
having at least one in-degree is called a
reachable state, while a state with no
in-degree is called a non-reachable state.
v) Cyclic state: Reachable states which
lie on cycles are called cyclic states.

vi) Attractor: A tate having a self-loop is
referred to as an attractor. An attractor
can be viewed as a cyclic state with unit
cycle length.

vii) Depth: The maximum number of state
transitions required to reach the nearest
cyclic state from any non-reachable state
in the CA

defined as the depth of the non-group CA.

state-transition diagram is

vii) Level and Predecessor: Level of a

state S, is defined as the minimum

number of time steps required to reach a

cyclic state starting from S, The state

S; can be viewed as 7 -level
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predecessor o the cyclic state.
ix) Multiple-attractor CA(MACA): The
CA for which the

state-transition diagram consists of a set

non-group

of disjoint components forming I(inverted)
tree-like structures rooted at attractors are
referred to as multiple-attractor CA. In
case the number of attractor is one we
call the CA single-attractor CA(SACA).
x) TPMACA: TPMACA is a MACA
such that every reachable state in the
stat-transition diagram has only two
predecessors. TPSACA is a SACA such
that
state-transition
The rank of T is
where T is the characteristic matrix of the
TPSACA.

xi) a-tree: The tree rooted at a cyclic of
the TPSACA.

22. [158] The

predecessors of a reachable state and the

every reachable state in the

diagram has only two

predecessors. n—1

Theorem number of

number of predecessors of the state 0 in a
linear nongroup CA are equal.

Lemma 2.3. [18] Let 7' denote p times
application of the complemented CA

operator T. Then

TR ={IPTH 70D 1]
[Fx) 1D 721 [A]

where T is the characteristic matrix of the
corresponding noncomplemented rule vector
and [F(x)] is an #n-dimensional vector
responsible  for

F(x) has "1’
entries (i.e, nonzero entries) for CA cell
XNOR
employed and Ax) is the current state

( m=number of cells)

inversion after XNORing.

positions  where function is

assignment of the cells.

3. Behavior of complemented CA derived
from a linear TPMACA

In this section we present the behavior of
complemented CA derived from a linear
TPMACA. Especially we investigate the
behavior
from a linear TPMACA C which the

of complemented CA derived

complement vector is an acyclic state
lying on some nonzero tree of C .
Lemma 3.1. Let F be a level 7 state in

the a(#0)-tree of a linear TPMACA C

and B be an attractor of C . Then

(B @7‘i_1F) lies on a cycle of length 2
of the complemented CA C’
corresponding to C .

Theorem 3.2. Let F be a level i
the a( #*0)-tree of a linear TPMACA C
and B be an attractor of C. Then
(BDe@DT ™ 'FH and B DT F lie
on the same cycle of length 2 of C’,

state in

where C’is in Lemma 3.1.

Corollary 3.3. Let F be a level ¢
the a(=0)-tree of a linear TPMACA C
and B be an attractor of C . Then the
sum of two different cyclic states which

state in

lie on the same cycle of length 2 of C°
is always a.

Lemma 34. Let C be a linear TPMACA
with depth d and F be a state at the
level (0 < i< d) of a non-zero tree in
Then

C as a complemented vector.

7“1'_1F lies on a cycle of length 2 in the
complemented CA C° Corresponding to
C.

Lemma 3.5. Let C be a linear TPMACA
with depth d and F be a state at the

level £(0< 7<d) in the a(=+0)-tree
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of C Then

a @7‘5_1}7‘ lies on a cycle of length 2
in the complemented CA C” Corresponding

to C.
Theorem 3.6. Let F be a state at the level

1(0< 1< depth) in the a(*0)-tree of
a linear TPMACA C as a complemented

as a complemented vector.

vector. Also let C’ be the complemented
CA Corresponding to C. Then the
following hold:

(a) If x is a state at level (7 + 1) in the
also a level

a-tee of C, then x is

(i 4 1) state in the T° 'F-tree of C’.
(b) If yis a state at level (7 + 2) in the
a-tee of C, then y is also a level
(i + 2) state in the (a @ T 'F)-tree
of C’.

(c) The state 0 of C
level T'F -tree of C.

(d) The state F is a level (7 — 1) state

is rearranged at

7 in the

inthe T 'F -tree of C".

Theorem 3.7. Let F be a state at the level
i (0 < i< depth) in the a( #+0)-tree of
a linear TPMACA C as a complemented
vector. Then following hold:

(a) If x is a state at level (7 + ;) in the
a-tee of C, then x is also a level
(i + ) state in the 7' 'F-tree of C’,
where ;7 is an odd number such that
i+ 7 < depth.

(b) If y is a state at level (i + ;) in

the a-tee of C, then ¥ is also a level

(7 + 7 state in thea D T 'F-tree of
C’, where j is an even number such
that 7 + j < depth.

Lemma 3.8. Let x and y be the level 1
a-tree and J-tree of a

states in the

linear TPMACA C Respectively. Then
x@y=a®DA

Theorem 3.9. Let F be a state at the level
7 in the a( #0)-tree of a linear
TPMACA C
Then the following hold:

(a) If x is a state at level (7 + ;) in the

as a complemented vector.

B(# a)tee of C. then x is also a
level (i 4+ 7 state in the
B@af@?iﬂﬁttree of C’, where ;J
is an odd number such that
i+ 7 < depth.

(b) If y is a state at level (7 + ;) in
the B( # @ )-tee of C, then y is also a

level (i + ;) state in the ST 'F
-tree of C’, where ;j is an even number
such that i + ; < depth.

(C) If w is a state in the B ( # a )-tee
of C
than
inthe 8 DT ' Fotree of C".
(d) The states at

such that the level of w is lower
7, then w get rearranged at level 7
level 7 of C get

rearranged at level up to (7 — 1) of C’.
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