Si₃N₄막으로 보호된 GaN의 급속 열처리효과 (Effect of rapid thermal annealing on GaN capped with Si₃N₄ layer) Sungchan Cho^a, Dongjin Byun^a, Eui Kwan Koh^b, Changhee Hong^c - ^a Department of Materials Science and Engineering, Korea University, Anam-Dong 5-Ka, Sungbook-Ku, Seoul, 136-701, Korea - ^b Seoul Branch, Korea Basic Science Institute, Seoul, 136-701, Korea - Dept. of Physics and Semiconductor Physics Research Center, Chonbuk National University Duckjin-Dong, Duckjin-ku, Chonju 561-756, Korea The effect of rapid thermal annealing (RTA) on GaN films capped with Si₃N₄ layer was investigated. Each of GaN films capped without and with Si₃N₄ was annealed with various times at temperature of 800, 900, 1000°C. After RTA, GaN films capped with Si_3N_4 were compared with no capping GaN films. The Si_3N_4 capping layers were removed by BOE(buffered oxide etchant) after heat treatment. Hall measurement, double crystal X-ray diffraction (DCXRD) and Raman spectroscopy were used to monitor the changes in electrical and structural properties. The carrier concentration of the GaN films with Si₃N₄ capping was decreased and the carrier mobility was increased, whereas the carrier concentration of GaN film without Si₃N₄ capping was increased and the carrier mobility was decreased. This result clearly showed that improved Hall mobility and carrier concentration was resulted from the protection of Si₃N₄ capping. Judging from these results, it can be concluded that the Si_3N_4 cap layer plays an important role in preventing the dissociation of GaN. fig1. Hall measurement results of GaN as a function of Temperature