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1. Introduction

Faults and fractures play an important role in the transport of fluid and solute through rocks with low
permeability. Under a wide range of circumstances these transport processes are concentrated onto a
network of interconnected fractures. Thus, it is important to understand the properties of fluid flow and
solute transport in individual fractures that consist of a fracture network.

Under effective normal stress, fracture walls create a complex distribution of contact and open areas,
which have significant effects on fluid flow and solute transport. In this paper, we presented numerical
studies of the behaviors of fluid flow and solute transport in a single fracture loaded by effective norma)

_stress. Apertures are distributed in a single fracture by a Gaussian law and the roughness of fracture
surfaces are represented by using a self-affine fractal model. The solute transport simulation was
performed by using the particle following method (Jeong and Song, 1998).

2. Generation of variable apertures in 2 single fracture

Fluid flow in a natural single fracture is sensible to the distribution of variable apertures (Gentier, 1986,
Brown, 1987). Most of measures detailed for the aperture distribution are performed by laboratory
experiments with natural fracture samples (Hakami and Barton, 1990). According to their results, the
apertures between two walls of fracture are distributed by a log-normal or gaussian law. This type of
apertures has been used in most of numerical and analytical studies of the fluid flow and the solute
transport in single fractures with variable apertures (Moreno er al., 1988; Pyrak-Nolte et al., 1988,
Renshaw, 1995).

Fig.1. Fractal surface generated using a Fourier filtering algorithm on a lattice of size 64 X 64.
{a) D=2.0, (D = 2.5.

In this study, variable apertures in a single fracture are normally distribured and the roughness of
fracture surface is represented by using a self-affine fractal model (Meakin ez al., 1997), The self-affine
fractal surface is characterized by its fractal dimension D and looks ‘simifar to itself when the length
scales in the x- and y-direction are rescaled by a factor b and the length scale in the z direction is rescaled
simultaneously by the factor b'. Fig. 1 illustrates an example of fractal surface generated on a lattice of
size 64 X 64 by using two different values of D. We can see that the fractal surface with D = 2.0 is more
smooth than that with D = 2.5,

: Researcher, Research Center for Disaster Prevention and Safety Management, Hong-Tk University
? professor, Department of Civil Engineering, Hong-Ik University

-~ 465 -



3. Local fluid tlow model at single fracture scale

Once the varnable apertures are generated in a single fracture discretized mto square grids, each cell of
size u being characierized by its own aperture e, the local flow can be calculated by taking the following
hypotheses: 1) fluid flow takes place in laminar range, 2) the cubic law is locally valid at the fracture
cell's scale. The hydraulic conductivity between cells i and j is calculated as harmonic mean. The
volumetric flow rate O between cells i and j with apertures ¢; and e, respectively is then proportional to
the hydraulic head gradient, as follows:
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where g[ms™] denotes a gravitational acceleration, v[m’s”'] is a cinematic viscosity and 4, and h, are
liydraulic heads at cells i and j respectively.
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Fig.2. Schematic illustration of fluid flow through a single fracture with variable apertures. H1 and H2 are the

global hydraulic heads prescribed at two opposite boundaries (H1 > H2).

In a steady-state flow condition, the principle of mass conservation at node 7 connecting to j other nodes
can be written as the following equation:

2.0;=0 (2)

J

After prescribed unit hydraulic heads (1 m/m) at two opposite boundaries (Fig. 2), the equation (2) can
be solved for the global flow in a single fracture. No flow condition is imposed at two boundaries paralle]
to the flow direction.

3. Solute transport model at single fracture scale

Once the steady-state flow is numerically solved, the transport simulation through the single fracture
will be carried out using the particle following algorithm. Particles are randomly introduced along the
upstream boundary, as a line source. When particles arrive at intersection, they reorient toward one of
out-going branches with a sampling and a probability proportional to the local flow rate.

Assuming that particles are inert and that no matrix diffusion occurs, the mean residence time 7, of a
particle in each square element i is calculated as follows:
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where e; [m] is an aperture of element 7 and V; [m°] is a volume of element i.
The summation of these mean residence times along charnnels from the upstream boundary to

downstream boundary gives the total residence time of the particle. This calculation repeats for many

particles (for example, 10000) and the result obtained is represented by a breakthrough curve on the

downstream boundary.
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4. Hyvdromechanical coupling at the single fracture scale

Fluid tlow in a rough fracture depends strongly on the aperture distribution. This distribution may be
varied with effective normal stress applied. As consequence, the effect of normal stress can influence the
fluid flow and solute tramsport in a single fracture. Generally, the relationship between the fracture
aperture and the supported effective normal stress is non-linear (Bandis er al., 1983). In this study. we
used Bandis™ hyperbolic model, which is expressed by:

— Mﬁ‘l (4)
" e +Au
where k,, [MPam’] is the normal stiffness at effective normal stress of zero, e, [m] is the maximum
closure (7.e. initial value of aperture in a unloaded condition) and Au [m] is the closure displacement.

Values of parameter of Bandis® model used in this numerical study are listed in Table 1. These values
are obtained from various hydraulic tests performed in the geothermic research area of Soult-sous-Forét
m France.

Table 1. Parameters and its values used in a numerical simulation

Parameters Values
Initial mean aperture, e, [m] 425.0
Standard deviation, o, [m] 153.0
Initial normal stiffness, k,, [MPa m™"] 25000.0

In our numerical simulation, the closure is uniformly increased (Table 2) and we will investigate the
rransport behaviors of fluid and solute induced by this compliant effect.

Table 2. Values of 4u and corresponding O, used in numerical simulations

’JH(XH)‘*/H) 0.00 ] 050 | 1.00 | 1.25 ] 1.50 | 1.75 | 2.00 | 2.25 2.50 275 3.00 3.25

Lcr,(/‘//:’ﬂ) 000|142 327|443 (580744944 | 1195 | 1518 | 19.48 | 25.50 | 34.53

5. Numerical results
5.1 Fluid flow simulation

Fluid flow simulations were carried out in 10 independent distributions at each level of effecuve
normal stress and all of results that we will present corresponds to mean values for 10 realizations. As an
example, Fig.3 tllustrates the distributions of local flow rate for O = 2.5 and 2.0 at o', = 9.44 MFPa. The
flmd flow in D = 2.5 is more tortuous than thatin D= 2.0,
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Fig. 3. Distributions of local flow rate at &', = 9.44 MPz for two different values of D =2.5 (a) and 2.0 {b). Dark
areas represent zones in contact,

Fig. 4 shows variations of the effective permeability of fracture with the effective normal stress for D =
2.50.2.20 and 2.00. We can observe that the effective permeability decreases almost identically between
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three values of D. However, the fracture generated by D = 2.00 is slightly more permeable than others.
This phenomenon 15 due to the difference of roughness, which is varied with D. In general, more the
fracture is rough, more its permeability decreases (Moteno et al., 1988; Ewing and Jaynes, 1993).

The relationship between the effective permeability of fracture and the ratio of mean effective aperture
(e, and its standard deviation (o) is shown in Fig. S. This ratio represents the mean separation between
two walls in a rough fracture and can be considered as a measure of fracture roughness (Brown, 1987).
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Fig. 4. Relationship between the effective permeability and the effective normal stress for three different values

Normalized effective permeability, (qla’c“f

of D= 2.5, 2.2 and 2.0. The effective permeabilities are normalized by a value at o, = 0.0. ¢, i5 a
hydraulic aperture calculated by cubic faw and e, is a mean effective aperture corresponding to a
arithmetic average of apertures obtained from each level of the effective normal stress.

When the ratio of e, and o, decreases, the effective permeability decreases showing almost identical
tendency between D = 2.5, 2.2 and 2.0. This tendency of effective permeability is similar to that obtained
from Thomson's work (1991). We also compared with results obtained from Zimmerman and
Bodvarsson's empirical model (1996) which is expressed by:

3 2
e, o .
- =|1-1L5| = 1-2
efﬂ e’ﬂ ( C) (J)

where ¢, [m] 15 a hydraulic aperture and ¢ is a ratio of zones in contact.
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Fig. 5. Relationship between the effective permeability and the ratio of e, and o, for three different values of D

= 2.5,2.2 and 2.0, and comparison with Zimmerman and Bodvarsson’s empirical model.
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The decreasing tendencies of effective permeability for three values of D = 2.5, 2.2 and 2.0 are almost
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the same as those predicted by Zimmerman and Bodvarsson’s model.
5.2 Solute transport simulations

Solute transport simulations were also carried out with the same fracture as that used in the fluid flow
simulations. These simulations were performed in 10 independent distributions of apertures at each level
of effective normal stress for two different values of D = 2.50 and 2.20. All of results obtained represents
mean values of these 10 realizations.

Fig. 6 shows the variation of mean transit time of particles with the effective normal stress for 0 = 2.50
and 2.20. The mean transit time increases non-linearly with the effective normal stress. Moreover, the
case of D = 2 50 increases slightly faster than that of D = 2.20. This result is due to the fact that the
particle pathway in the fracture with D = 2.5 is more tortuous than that in the fracture with D = 2.20

(Fig.7).
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Fig 6. Variations of mean transit time with the effective Fig. 7. Variations of tortuosity factor with effective
normal stress for 2 = 2.50 and 220, normal stress for D= 2.60 and 2.20.

Fig. 8 dlustrates the trajectories of particles transported along the most efficient channels for fluid flow.
These channels are varied with the effective normal stress. This phenomenon is due to the increment of
rones n contact by the effective normal stress and is similar to that obtained from David’s work (1993).
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Fig. 8. Trajectories of particles transported along the most efficient channels for fluid flow at three different
values of the effective normal stress. From left, ¢, = 0.00, 15,18 and 25.50 MPa.

Fig. 9 shows the variation of the Peclet number with the effective normal stress. This number 15 a
dimensionless measure of the dispersivity (Moreno et al., 1988) and is calculated by the same method as
that performed by Moreno ef al. (1988). We can see that there is no apparent difference between D =
2.50 and 2.20. The number of Peclet decreases very rapidly up to 5.80 MPa of &,. This result means that
the channels provided to particles are progressively reduced by zones in contact increasmg as &,
increases. After this process, most of particles displace only along one or two main channels.
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Fig. 9. Variations of number of Peclet with the effective normal stress for D = 2.50 and 2.20.
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6. Conclusion

We studied numerically the hydromechanical behaviors of a single fracture generated by the seif-affine
lractal model and observed that the effective permeability of this fracture depends strongly on the
distribution of variable aperture which is varied with the effective normal stress. The results obtained
from these fluid flow simulations are a good agreement with those predicted by Zimmerman and
Bodvarsson’s empirical model. In the solute transport simulation, the most efficient channels for flud
flow are varied with the effective normal stress. However, once the effective normal stress arrives at
certain level (ze. 11.95 MPa in our study), these channels have almost the same form. Moreover. the
particles displace only along the channel reduced and thus the spatial dispersion of particles become
constant.
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