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ABSTRACT

A lumped electrical circuit is an approximate represen-
tation of the field within a curtain frequency range. The
finite element modelling is a synonym of the equivalent
circuit. The electric conduction field and electric po-
tential wave field have been modelled by an admittance
network and an LC low-pass filter network. Here in the
present paper, the equivalent magnetic circuit represen-
tation is created for a magnetostatic field by the finite
element modelling in two dimension.

1 INTRODUCTION

Electrical circuit theory and electromagnetic field the-
ory have historically been developed independently.
The electrical circuit is essentially a lumped model to
the electromagnetic field, which is however only valid at
low frequency range or at the longer wavelength than
the size of the objective field. The finite element ap-
proach provides a numerical analysis method on the
one hand and a discrete modelling of the spatially dis-
tributed field with respect to the nodes of the meshes
or elements into which the field is divided on the other
hand. The lumped element models have been examined
for electrostatic, electroconductive and potential wave
or acoustic fields[1][2]. The triangular and pyramidal
element field are equivalently expressed by the lumped
parameter components between the nodes.

In the present paper, the modelling has been ex-
tended into the magnetostatic field in two dimension,
made for the magnetic potential. Extension is also
made to the equivalent circuit expression with respect
to the magnetic flux density.

2 MAGNETOSTATIC FIELD

We confine ourselves to the two-dimensional field as
shown in Fig. 1. The functional is formed from energy

functions as
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where v(= 1/u, p is magnetic permittivity) is the mag-
netic resistivity, A(= A,) is a component of the mag-
netic vector potential A(= (A;, 4y, A.)). A is defined
as B = rot A, in which B is magnetic flux density. For
the two-dimensional field
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Fig. 1: Magnetostatic field in two-dimension

3 MAGNETOSTATIC FIELD IN TERMS OF
MAGNETIC VECTOR POTENTIAL

Element

Fig. 2 shows an triangular element in which the poten-
tial at an arbitrary point is given as the interpolation
of the nodal potentials {A}.(= {A;1 A2 A3}). When an
linear interpolation function is used, the potential is
now expressed by

3
A(z,y) =Y NA; = {N}T{A}. (3)

N; is the interpolation function given as

1
N; = E(bi + ¢z + diy) (4)
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where
bi = TjYk — TkYj, G =Yi — Yk, di =Tk —T;  (5)

The subscripts permute in the order of 7, 7 and k. A,
is the area of the triangular element.
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Fig. 2: Triangular element

In the similar manner, the current density is
3
Jz,y) =Y NiJi = {N}T{I}. (6)
i=1

The functional £, for the element is now expressed dis-
cretized so that :

Lo= S{AFISIA) — (AT (D). ()

For the stationary condition §£. = 0, one obtains

[Sle{A}e = {I}. (7)
where y
Sij = Sji = E‘(cicj + d‘id_’i) (8)

It is easy to show that

3
Si=—Y S (9)
G2
and
L= —13—AeJ (10)

Equivalent Circuit

Fig. 3 shows in figure(a), the equivalent circuit ex-
pression of an element corresponding to the matrix

equation(7), and in figure(b), the two connected ele-
ments. The matrix expression to figure(b) is

[ S1 S12 Sis 0 1
)= | S SptSh SpASm Suy g
531 832 + S32 S33 + 533 S34
0 Sa2 S43 Saq

The circuit equation has the form

[SHA} =[] (12)

in which the coefficient matrix is of admittance type,
which makes thus the connection easy. The dimensions
of the expression are [%Vmb], [%2] and [A] respectively.

I

(b) Connected elements
Fig. 3: Equivalent circuit

4 MAGNETOSTATIC FIELD IN TERMS OF
MAGNETIC FLUX DENSITY

In usual finite element formulation of the magnetostatic
field analysis, magnetic vector potential is taken as the
dependent (unknown) variable, for which the field is
solved. The flux density B is then obtained by differ-
entiating the potential A (equation(2)). Z.H.Shaiki et
al [4] presented an alternative approach with the mag-
netic flux densities as the unknown variables. They
developed this approach as the better solution could be
expected for the magnetic flux density solution. This
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can be the starting point to the alternative equivalent
circuit expression.

We again confine ourselves to the two dimensional
field. From Maxwell’s equations, one has the magneto-
static equations as follows

(9B,  9°B,\ 9] _
v Gt tg, =0 (39
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It is interesting that the two equations are independent.
The equations are discretized by means of the Galerkin
method in which the triangular linear element as used
in the previous section is used to give the expression of
the form

[Cle{Bz}e = {Jy}e (14-a)
{C]e{By}e = _{Jx}e (14-b)

where the component of [C] is
Cij=Cji = 4—26(0»'01' + did;) (15)

Ci; is exactly the same as S;; in equation(8). For the
conductor region, however, the exciting terms should
be replaced by the following expressions.

1, oJ

Jy,; = -3-Ae~é?j' (16—&)
1, aJ

Joi = 30 (16-b)

If J is constant across the conductor, 8J/dy = 0 within
the conductor. This is not zero along the line non-
parallel to the y axis between the conductor and the
non-conductive regions.

For the triangular element 123 illustrated in Fig. 4,
8J/0y is not zero for the line 23. Therefore the ex-
citing vector is given so that

{Jye={0 3ldilJ 3lda]J } (17-a)
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Fig. 4: Exciting current region

Similarly
{Jzle={ 0 slalJ jleaJ } (17-b)

As the result, one has the two discretized expression
corresponding to the field given by equations(13)

[SH{By} = {Jy} (18-a)
[S]{Bx} = _{Jx} (18-b)

The exciting terms on the right hand side have the non-
zero terms only at the nodes corresponding to the nodes
between the conductive and non-conductive regions.
They could directly be obtained by differentiating the
both sides of equation (7), with respect to dz or dy re-
spectively, in which however the right hand side should
carefully be treated. Equations(18) are two indepen-
dent equivalent circuit similar to Fig. 3, in which A; is
replaced by B;; or By; and I; by J; or J;;. They are
again an admittance type expression. The dimensions
of each term in equations(18) are respectively [%-Vm:],

[Y] and [2].

5 MAGNETIC CIRCUIT

The equivalent magnetic circuit approach is frequently
practiced by engineers for the device design, which has
the form of

[RI{2} = {F} (19)

$ = BS is the magnetic flux, F = NI is the magne-
tomotive force and R = % is the magnetic resistance,
where S is the cross sectional area of the magnetic path,
N is the number of turns of the coil wound around
the magnetic path and I is the electric current of the
coil wire, L is the length of the path. Equation(19) is

an impedance type expression, and the dimensions are
[Wib , [Wp] and [A]. The components of the resistance

matrix in equation(19) is made of line segments. As
the expression is of impedance type, it is not easy to
evaluate the matrix components when two segments are
connected in parallel, while the component evaluation
is straightforward when two elements are connected in
the finite element modelling, as the expressions(7) and
(18) are of admittance type.
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