Proceedings of the Korean Information Science Society Conference (한국정보과학회:학술대회논문집)
- 2001.10b
- /
- Pages.151-153
- /
- 2001
- /
- 1598-5164(pISSN)
Hierachical Reinforcement Learning with Exploration Bonus
탐색 강화 계층적 강화 학습
Abstract
Q-Learning과 같은 기본적인 강화 학습 알고리즘은 문제의 사이즈가 커짐에 따라 성능이 크게 떨어지게 된다. 그 이유들로는 목표와의 거리가 멀어지게 되어 학습이 어려워지는 문제와 비 지향적 탐색을 사용함으로써 효율적인 탐색이 어려운 문제를 들 수 있다. 이들을 해결하기 위해 목표와의 거리를 줄일 수 있는 계층적 강화 학습 모델과 여러 가지 지향적 탐색 모델이 있어 왔다. 본 논문에서는 이들을 결합하여 계층적 강화 학습 모델에 지향적 탐색을 가능하게 하는 탐색 보너스를 도입한 강화 학습 모델을 제시한다.