A Reactive Planner-Based Mobile Agent System

Whang-Hee Seok® and In-Cheol Kim"

*Department of Computer Science, Kyonggi University
San94-6, Yiui-Dong, Paldal-Gu, Suwon, 442-760, KOREA
Tel : 82-31-249-9670, Fax : 82-31-249-9673

hDepartment of Computer Science, Kyonggi University
San94-6, Yiui-Dong, Paldal-Gu, Suwon, 442-760, KOREA
Tel . 82-31-249-9669, Fax : 82-31-249-9673

Abstract

Mobile agents have the unique ability to transport
themselves firom one system in a network to another. The
ability to travel allows mobile agents to move to a system
that contains services with which they want to interact and
then to take advantage of being in the same host or network
as the service. But most of conventional mobile agent
systems requive that the users or the programmer should
give the mobile agent its detail behavioral script for
accomplishing the given task. And during its runtime, such
mobile agents just behave according to the fixed script
given by its user. Therefore it is impossible that
conventional mobile agents autonomously build their own
plans and execute them in considering their ultimate goals
and the dynamic world states. One way to overcome such
limitations of conventional mobile agent systems is to
develop an intelligent mobile agent system embedding a
reactive planner. In this paper, we design both a model of
agent mobility and a model of inter-agent communication
based upon the representative reactive planning agent
architecture called JAM. An then we develop an intelligent
mobile agent system with reactive planning capability,
IMAS, by implementing additional basic actions for agent
moves and inter-agent communication within JAM
according to the predefined models. Unlike conventional
mobile agents, IMAS agents can be able to adapt their
behaviors to the dynamic changes of their environment as
well as build their own plans autonomously. Thus IMAS
agents can show higher flexibility and robustness than the
conventional ones.

Keywords:
Mobile Agent, Reactive Planner, JAM

Introduction

A software agent that migrates from one remote host in a
network to another along with its data, codes and state

-179-

information to perform a given task is called mobile agent.
Recently, interests in mobile agent have emerged in various
fields, and consequently a variety of systems has been
implemented. Major examples are Telescript [5], Agent
Tel (Tool Command Language) [2], Ara (Agent for Remote
Action) [11], TACOMA (Troms And COmell Moving
Agents) [12], Aglets Workbench [9], Voyager [14],
Odyssey [15], and Concordia [13]. Also, application
systems employing mobile agents have been developed and
they include Mobile Computing Devices, Network and
Distributed System Management, Remote Diagnosis,
Electronic commerce, Internet Information Retrieval,
Distributed Simulation, and Virtual Enterprise.

Most of the existing mobile agent systems require users or
programmers to enter extensively detailed behavior script to
perform assigned tasks. Such an agent system is limited in
its functionalities in that it simply acts as described in this
fixed script at runtime. Therefore, it is impossible that an
agent dynamically formulates and executes a plan taking
into account the goal and the environment at execution
time.. In order to enter the detailed behavior script prior to
runtime, users or programmers need to acquire complete
information about dynamic working environment that the
agent will face with. However, in most of environment
adopting mobile agents that leave users and migrate to work
in various remote heterogeneous hosts, predicting all
possible situations that these agents might face with is
extremely difficult, if not impossible. The network and
system faults, or internal composition changes in the
platforms, interruption and delay in network transfer due to
overloads, and others are all possible incidents. Therefore,
the existing mobile agent systems that follow fixed script
given on the basis of incomplete prior knowledge are
incapable of dealing with the changes effectively when
these unexpected incidents occur.

One way to address the problem of mobile agent system in
that it is restricted in the aspects of autonomy, reactivity
and robustness is to develop an intelligent mobile agent
system based on reactive planner [7][8]. In general,

whereas the plan generation and plan execution phases are
two separate, sequential processes in traditional deliberative
planners, reactive planners have the advantage that they can
respond to changes in the environment dynamically and
sensitively, because plan generation, execution, and
detection of changes in the real world and the consequent
plan modifications are integrated into one process and
performed in turn. In order to implement an intelligent
mobile agent system that possesses mobility and
communication functionality on the basis of reactive
planner, we need to establish an efficient model for
mobility and communication agent, to implement primitive
actions for mobility and communication on the basis of
these models, and provide the agent with an internal
reactive planner. An intelligent mobile agent system like
this requires users to declaratively enter the goal and
domain knowledge for the agent conforming to a unique
method of expression, instead of programming specific
behavior script of mobile agent directly in specific
programming or script language. The agent itself can
establish dynamically plans necessary to achieve the goal
and execute them. The plans of a mobile agent contain
mobility and communication actions basically provided by
the system as well as the actions related to domain
knowledge entered by the user. Also a reactive planner
which is the core of a mobile agent architecture monitors
the real world while executing the plans, and if it detects
the situation changes and as a consequence of the event it
cannot perform the remaining plans, it immediately
attempts to generate new plans or modify without direct
interruption by the user.

On the basis of JAM [7], well-known reactive plan agent
architecture, we designed a mobility model and a
communication model between agents. By applying these
models and implementing additional primitive actions for
mobility and communication of agent on JAM, we
developed an intelligent mobile agent system called IMAS.
IMAS' is a mobile agent that can establish and execute the
plans autonomously. If IMAS is provided with declarative
domain knowledge for application from a user, it can be
used as an agent development tool that one can easily
develop various application mobile agents. Behaviors of
mobile agents created using these IMAS will be guided by
plans containing mobility and communication actions we
extended for this research. Unlike the existing mobile
agents, IMAS mobile agents will display more flexibility
and robustness, because they can efficiently adapt to the
changes in dynamic environment and establish or modify
their own plans for action with respect to the goal.

In the following sections, we will briefly introduce JAM 71,
a major reactive plan agent architecture, on which we
implemented IMAS. We also describe the design and
implementation of IMAS in detail, and then conclude.

2. Architecture of Reactive Plan Agent

2.1 Basic Concepts

In general, an agent architecture that adopts a planner as the

-180-

core of internal components is called plan agent
architecture. The conventional artificial intelligent planner
and/or planning system regards plan generation and plan
execution as two separate, independent processes. That is,
in plan generation phase, the goal to be achieved by the
agent, current state, and possible actions are expressed and
presentzd to the system in symbolic logic. Based on this
knowledge, the system determines the sequence of actions
to be taken to achieve the goal. For the plan execution
phase, a sequential control architecture is expected to
control a separate runner that executes these generated
plans szquentially. These conventional artificial intelligent
planners are called deliberative planners. It is assumed in
the traditional deliberative planners that the planner
acquires all complete and correct information about real
world by the plan generation phase. Thus, the system can
not modify the plans or even re-plan promptly in response
to the changes in the surrounding conditions when
unexpected events or changes occur in the middle of plan
generation or plan execution process. This has been noted
as a weakness of the conventional planning system. In
contrast with deliberative planners, the planners that
promptly respond to environmental changes by performing
plan generation, plan execution and plan modification
within a planner simultaneously or in parallel, are called
reactive planners. Examples of these reactive planners are
PRS (Procedural Reasoning System)[16], TouringMachine
and InteRRaP.

¥

World Model

2.2JAM

o 6 ghae

Figure 1 - Components of JAM

JAM [7] is an intelligent agent architecture which grew out
of many researches descending from PRS (Procedural
Reasoning System) which was proposed by Georgeff [8].
Several functionalities have been added and extended onto
PRS plan agent architecture, and JAM is a
re-implementation of PRS in Java language. JAM consists
of five components as shown in Figure /. Through the
interaction of these five components, JAM responds to the
real world. It brings about cyclic effect by repeating the
internal processing triggered by the changes imposed from
external environment, and then influencing the external
envircnment applying the result of the process.

(1) World Model: Information held by an agent regarding
the real world. Facts or beliefs held by the agent are
represented as follows:

FACTS:
FACT robot_status "Ok";
FACT robot_position 10000 10000 0;

(2) Plan Library: A set of abstract plans, which are given
by the agent designer in the initial phase of development.
An abstract plan is described as follows:

Plan:

{
GOAL.: [goal specification]
NAME: [string]
BODY: [procedure]
<DOCUMENTATION: [string]>
<PRECONDITION: [expression]>
<CONTEXT: [expression]>
<UTILITY: [numeric expression]>
<FAILURE: [non-subgoaling procedure]>
<EFFECTS: [non-subgoaling procedure]>
<ATTRIBUTES: [string]>

[t
i

(3) Interpreter: The interpreter creates sub-goals and
specific plans, and executes them after the agent designer
provides declaratively the agent with the world model, the
goal, and a set of available abstract plans.

(4) Intention Structure: The Intension structure represents
subgoals that the agent is pursuing in order to achieve its
goal, and states of specified plans that agent is currently
executing.

(5) Observer: During reasoning cycles of interpreter, the
observer monitors changes in the external world. The
resulting observation is described as given below:

OBSERVER:

§
§

RETRIEVE initialized $VALUE;

WHEN: TEST(== $VALUE "False"){
EXECUTE setShowAPL 1;
EXECUTE setShowGoalList 1;
EXECUTE setShowWorldModel 1;
EXECUTE setShowIntentionStructure 1;
UPDATE (initialized) (initialized "True");

i
§

Following is an example of JAM program that contains
each of the five components mentioned above:

-181-

GOALS: ACHIEVE cycle_tested;
FACTS: test_done "False";
"False";

0;

system_init
cycle_number
OBSERVER {
RETRIEVE cycle number $N ;
EXECUTE print "\n Cycle#" $N "\n";
UPDATE (cycle_number $N) (cycle_number (+ §N 1));

}
PLAN {

NAME: "Test CYCLE"

GOAL: ACHIEVE cycle tested;

CONTEXT: FACT test done "False";

BODY:
EXECUTE print "\n Normal execution started. \n";
UPDATE (system _init) (system_init "True");
WHILE: TEST (==11) {

EXECUTE noop;

}

In order to facilitate its application development, JAM
provides basic actions within each plan that can be
triggered using "EXECUTE" command. In addition, JAM
allows programmers to easily define additional actions in
Java language. One of the important functions provided in
JAM is check-point functionality that is to record execution
states of the agent. This check-point accumulates
information which becomes an important basis for cloning,
restoring, and migrating of the agent.

3. Design of Intelligent Mobile Agent System

For this study, in addition to develop an intelligent agent
equipped with a planner based on JAM, we intend to
implement mobility and communication functions of an
agent, two of the most important functionalities required for
intelligent agent systems. Initially, it is necessary to design
major components necessary for mobility and
communication of an agent and then to formulate the
models defining the relations and interaction among these
components. In this section, we describe the design of
mobility model and communication model that IMAS, the
intelligent mobile agent system we implemented, is based
on.

3.1 Mobility Model of Agent

In order to implement an intelligent mobile agent system,
we designed mobility model of agent that consists of three
components -- place, mobile agent, mobility server. The

function of these three components is depicted in Figure 2.

restore

s

Figure 2 - Mobility Model of Agent

(1) Place: The place is a virtual work area that mobile
agents run in a distributed network. The place can be one or
more locations within one host computer physically
connected to a network. Each place must contain one
mobility server that runs all the time. All the mobile agents
reside in distributed places in a network, constantly
performing their tasks, except when they migrate between
different places.

(2) Mobility Server: A mobility server is assigned to each
place. It provides assistance to a mobile agent when it
attempts to migrate into the local machine. Each mobility
server maintains an address consisting of the port number
and the host name. When a remote mobile agent wants to
migrate into the location where the mobility server resides,
the mobility server restores the mobile agent in the local
machine after receiving its current internal state information
through socket connection to the agent.

(3) Mobile Agent: A mobile agent is autonomous
software that performs useful tasks for a user, migrating to
many places on a distributed network, aided by the mobility
server. In order to move to certain remote place, a mobile
agent establishes socket connection by using physical
address of mobility server running on that place. Once
connected to the mobility server of destination, the agent
transfers serialized internal state through the socket. With
the assistance of mobility server in the destination, the
mobile agent is restored to the state prior to migration, and
resume execution in the destination place.

We present the process of agent migration in more detail as
follows. First, there should be a mobility server running
constantly in the destination place. While running, the
mobility server waits for internal state information from
mobile agents, monitoring the designated port. The mobile
agent then executes migrating action, "Go" command,
within its execution plan. When this migration action is
triggered, the agent attempts to connect through socket to
the mobility server in destination place. When the
connection is established, it causes the internal state
information to be serialized and sent to the mobility server
of destination through the socket. Finally, the mobility
server of destination that receives internal state information
of the agent through the socket, restores the mobile agent
using the received state information and class files for this
mobile agent in the destination file system.

-182-

3.2 Communication Model between Agents

In this section, we present our design of a communication
model between agents as shown in Figure 3. It comprises
two besic actions for communication, MessageServerAgent
and MessageClientAgent whose functions are displayed in
Figure 3.

501
BALX &441(2)
o1 B RI)

HE(5)
JA’l S441(6)

4
A R

Figure 3 - Communication Model between Agents

(1) Message: We assume that communication between
agents is primarily composed of actions of sending and
receiving messages in character string data type. We also
assume that the message exchange is enabled by the socket
connection between server side and client side as it is the
case for agent migration. Asynchronous messaging of
disconnection style, like email, is also available, but in the
system for this research, only synchronous messaging
through the socket connection is supported. Through the
socket connection, byte stream converted from character
string, various multimedia information, or objects can be
transferred, but in the model for our research, only
messaging of most primitive character string type such as
standard communication language between agents, called
KQML, is supported.

(2) Message Server: The message server resides in one
place in a distributed network, and exchanges the messages
with certain remote mobile client through the socket
connection. For this, each message server agent holds host
name and address, and it communicates with many clients
that attempt to connect to using the address.

(3) Message Client: Unlike a MessageServer agent that
resides in one place, the MessageClient agents constantly
move to different places in a distributed network and can
communicate with MessageServer agent. In order to resume
communication after they move to another place,
MessageClient agents must terminate the connection to
MessageServer agent before moving and then restore the
connection to MessageServer agent through the socket after
reaching the destination

Let's suppose that a MessageClient agent is communicating
with a MessageServer agent in a remote host and a need to
move to a new location arises, and it also needs to
communicate with other mobile agents while migrating to
the destination. The communication messages that take place
between agents can be decomposed into several step units.
First, a MessageClient agent running in place A requests the
socket connection by triggering "connectToAgentAsClient"
action in order to communicate with MessageServer agent in

a remote place B. If this succeeds, the agent communicates
with MessageServer agent through the socket. In order to
move to a new remote place C, in the middle of
communication with MessageServer agent in place B, the
MessageClient agent disconnects the socket. And after
disconnecting, the MessageClient agent moves to the remote
destination place C by executing "Go" command. If this
migration succeeds, again MessageClient agent performs
"connectToAgentAsClient” action to communicate with
MessageServer agent and tries to establish socket connection
again. Once it is connected, the MessageClient agent
communicates normally as before. When it needs to
terminate communication, or needs to move again to a new
place, it disconnects itself from MessageServer agent. By
performing the process described above repeatedly, the
agents can communicate while migrating.

4. Implementation of Intelligent Mobile Agent
System

4.1 Implementation of Agent Mobility Model

For this study, we implemented in Java mobility servers
that reside in individual hosts and help migration of agents
based on the mobility model of agents described in Section
3. In addition, we extended JAM architecture so as to create
mobile agents by implementing "Go" command which is a
basic action for agent migration, on this reactive planning
agent architecture.

Figure 4 shows an execution scenario of an agent
performing tasks moving along three different distributed
hosts. The plans of the agent that this execution scenario is
based on are triggered by "Go" action and listed in Table /.

X Action 1
€1| Action 2
Action 3

Action 7
Action 8

Action 9

internal | #G€Nt:
states 6355y (Go}

Internal
states

Figure 4 - Mobility Scenario of one Agent

Figure 5, Figure 6, and Figure 7 show the results of tasks
performed, which a mobile agent accomplished moving to
the remote hosts one after another following the plans

Waiting for incormning agent on ':<I?I‘I

Starting to execute,

hostnarme is 2eus
port nurnber is 8000

Figure 5 - Execution on Host A

-183-

Starting to execute,

hostname is epsilon
port number is 8001

or
for coming agent on port: 8002

Starting to execute, ”

hostname is dragon
port number is 8002

Action 7
Action 8
Action 9
1JAM: All of the agent's top-level goals have been achieved! Exiting...

Runtime statistics follow:

umber of APLs ganevated: 26
umber of Null APLs: 25
umber of Goals established: 1 b2
umber of interpreter cycles: 25 .
APL generation time: 0,063 seconds.
Intending time: 0.0 seconds,
Plan execution time: 0.718 seconds.
Observer execution time: 0.0 seconds.
Total run time: 0,828 seconds.

Figure 7 - Execution on Host C

Table I - Mobility Plan of Agent

BODY: e e

EXECUTE com.irs.jam.primitives.GetHostname.execute
$hostname;

ASSIGN S$port 8000;

EXECUTE print "hostname is " $hostname™n";
EXECUTE print "port_number is " $port "\n";
EXECUTE print "Action 1\n";

EXECUTE print "Action 2\n";

EXECUTE print "Action 3\n";

/ Performe to given host name and port number.
IASSIGN $hostname "epsilon.kyonggi.ac.kr"

ASSIGN $port (+ $port 1)

EXECUTE Go $hostname $port;

EXECUTE com.irs.jam.primitives.GetHostname.execute
$hostname;

EXECUTE print "hostname is " $hostname "\n";
EXECUTE print "port_number is " $port "\n";
EXECUTE print "Action 4\n";

EXECUTE print "Action 5\n";

EXECUTE print "Action 6\n";

.

4.2 Implementz{tion of Communication Model between
Agents

We also implemented in JAM [7] architecture several
primitive actions. These are, "connectToAgentAsServer,
connectToAgentAsClient, sendMessage, recvMessage,
disconnect" for communication between agents based on
communication model that we designed in chapter 3. This

implement enabled JAM agents to generate the plan for
migration and communication using these primitive actions,
and play the roles of message server agent and message
client agent. Figure 8 shows an example of communication
scenario between agents. This example depicts a
communication scenario that a mobile agent in place B
moves to C and D in turn, and exchange messages with
other agent in place A. The mobile agent in the example,
called MessageClient, disconnects itself in the middle of
communication with MessageServer agent through socket
located in place B, moves to another place, and establishes
again the connection to the MessageServer.

The primitive actions defined for communication between
agents are given below:

(1) Connection Action of MessageServer: This resides in
one place in a network waiting for a request for connection
from a remote mobile MessageClient through the socket.
For this functionality, a MessageServer agent has an
address consisting host name and address, and using the
address, it is able to communicate with many
MessageClients requesting connections.

H&(1)

HAIK &4=8(2)

o2 A7)

01S(go)4) 01S(go)8)

Figure 8 - Communication Scenario between Agents

(2) Connection Action of MessageClient: This is an agent
that moves to different places in a network and can
communicate with a MessageServer agent. In order to
communicate with a MessageServer agent when a
MessageClient agent moved to different places, the
MessageClient agent must terminate the connection to the
MessageServer agent that it was communicating with
before moving, and then re- connect to the MessageServer
agent through the socket after reaching the destination.

(3) Message Sending Action: This is an action for sending
messages in character string data type from a
MessageServer agent or MessageClient agent in one place
to MessageServer agent or MessageClient agent in other
place through the socket.

(4) Message Receiving Action: This is an action for
receiving messages of string type which are sent from
MessageServer agent or MessageClient agent in other place
through the socket.

(5) Disconnection Action: This is an action executed when

-184

an agent does not need to communicate any further, or
when an agent attempts to move to a new place. This
action causes the socket of MessageServer agent to be
disconnected.

Table 2 shows the communication plans between agents
that we implemented for research, and specifically a part of
plans for a MessageClient agent. It displays the process that
an agent repeatedly communicates with the MessageServer
agent, disconnects itself from the MessageServer agent, and
then reconnects to it.

Table 2 - Communication Plan of MessageClient Agent

BODY:

IASSIGN $x 0;

WHILE: TEST (< $x 5) {

EXECUTE print "Sending server a message of
\"I will quit! !N §x "\n";

ASSIGN $x (+ $x 1); };

EXECUTE print "Waiting for server reply.\n";

EXECUTE com.irs.jam.primitives.recvMessage.execute
$IN $MSG;

EXECUTE print "Server reply was:\""$MSG"\".\n";

EXECUTE com.irs.jam.primitives.disconnect.execute
8000 "localhost" $socket $IN $OUT;

EXECUTE Go "epsilon" 8000;

EXECUTE
com.irs.jam.primitives.connectToAgentAsClient.execute
8000 "localhost" $socket $IN $OUT;

}

Figure 9 and Figure [0 present the results of
communication between a MessageServer agent and a
MessageClient agent.

r«lessageSwen‘«,gem
{Starting to execurte, o

Waiting as server for client connections, . o
$JUT was: java.io,PrintStream@20c 1af, $IN was: ‘ava.|o.Da|aln€.ytStream@2ﬂc!b3, .
570 SERVER" v

§Sending server connect message of 'CONNECTE]

Waiting for client command, 1.
Client command was: | will go I1HILINT
Vaiting for client command,
Client command was: '} will go !
Viaiting for client command,
Client command was: T will go 1!
Vaiting for client command

Client command was: " will go 1t
V/aiting for client command, .
Client command was: " will go 111113111,
< ending reply to client,

Vfaiting as server for client connection,
S
Figure 9 - Execution Result of MessageServer Agent

Starting to execute,

Connecting to server,
T was: java.io PrintStream@20c1e2, $IN was: java.lo.DatalnputStream@®@20c 1eB. ..’

Receiving server connect messagde

Server connect message was: "CONNECTED TO SERVER".

Sending server a messaga of "1 will go HiTHINT,

lncommina rnessage of First Server was: "Q~~~~~| GUTI

- o

Sending server a messags of 7 will go NN
DO K,

Incomming rressage of fE-'irst Server was:

Sending server a message of 7 will go 1", 2
Incomming message of First Server was: "D~~~ Kaner,
'Sending server a message of 't will go 111N, 3
incomming message of First Server was! ~~in,

Sending server a message of ") will go 11t
Incomming message of First Server was:

S

e 11

Waiting for server reply.
Server reply was: ‘Gond bye I,

by L ToMAS TR i dad g i e

Figure 10 - Execution Result of MessageClient Agent

5. Conclusion

In this paper, we present out implementation of an
intelligent mobile agent system equipped with planning
capability. In order to develop the system, we designed and
implemented mobility actions of agent and communication
actions between agents on the basis of an existing reactive
plan system, called JAM [7]. The main feature of this
system is that it can establish and execute the given tasks
requiring mobility actions and communication actions
through reasoning on the basis of a internal reactive planner,
and that it can modify the plans or re-plan promptly
responding to the changes of external environment that
might occur in the middle of execution. An intelligent
mobile agent system developed for this research can be
used as a development tool that can be easily developed
into various application mobile agent systems, if provided
with application domain knowledge by the user. However,
the mobility and communication models of this system
have several weaknesses. Firstly, when there are several
mobile agents that attempt to enter simultaneously into the
same place, a MobilityServer is not capable of handling the
problem by providing concurrent services to these mobile
agents. Secondly, the system is less reliable in that it
provides no alternative means to correct the situation when
an agent fails to migrate, for example, due to disruptions in
serialization or restoration phase. For communication
models, it is first noted that, as in the case of mobility
model, it provides no functionality for concurrent message
processing on the part of MessageServer. Secondly, it does
not provide communication mechanism with asynchronous
agents as email. Thirdly, the messages between agents do
not take the format of a interagent communication language
which is characterized by its rigid grammar and semantics.
The area of future work will be to mitigate these limitations
of IMAS, the intelligent mobile agent we implemented and
described in this paper.

Reference

[1] C. G. Harrison, D. M. Chess, A. Kershenbaum, “Mobile
Agents : Are they a good idea?”, Technical Report, IBM
T.J. Watson Research Center, 1995.

[2] Robert S. Gray. Agent Tcl: A transportable agent
system. In Proceedings of the CIKM Workshop on
Intelligent Information Agents, Fourth International

-185-

Conference on Information and Knowledge
Management (CIKM 95), Baltimore, Maryland,
December, 1995.

[3]J. Baumann., F. Hohl. K. Rothermel., and M. StarBer.,
"Mole-Concepts of a Mobile Agent System," World
Wide Web, 1(3):123-137, September 1998.

[4] Jacho Lee, Edmund H. Durfee, and Patrick G. Kenny,
Marcus J. Huber, UM-PRS : An Implementation of the
Procedural Reasoning System for Multirobot
Applications, Proceedings of CIRFFSS 94, pp. 842 -
849, 1994.

[5]J. E. White, "Telescript Technology: Mobile Agents,"
General Magic White Paper, Appeared in Bradshaw, J.,
Software Agents, AAAI/MIT Press, 1996.

[6]J. E. White, “Mobile Agents”, Software Agents, MIT
Press and American association for Artificial
Intelligence, 1997.

[7]Marcus J. Huber, “Jam Agents in a Nutshell”,
http://members.home.net:80/marcush/IRS, 1998.

[8] Michael Georgeff and Amy L. Lansky, Reactive
Reasoning and Planning, In Proceedings of the Sixth
National Conf. on Artificial Intelligence (AAAI-87), pp.
677 - 682, Seattle, WA, 1987.

[9] Mitsuru Oshima, Guenter Karjoth, and Kouichi Ono,
Aglets Specification 1.1,

[10]http://www.trl.ibm.co.jp/aglets/spec11.html, 1998.

[11]S. Hyacinth Nwana, "Software Agents : An Overview",
Intelligent Systems Research, Advanced Applications &
Technology Department, Knowledge Engineering
Review, Vol. 11, No 3, pp. 205 - 244, October/
November 1996.

[12]H. Peine, and Stolpmann, T., "The Architecture of the
Ara Platform for Mobile Agents," Proceeding of the
First International Workshop on Mobile Agents(MA'97),
Berline, Springer Verlag, LNCS 1219, pp.50-61, April
1997.

[13]Dag Johansen, Robbert van Renesse and Fred B.
Schneider, Operating system support for mobile agents ,
Proceedings of the 5th. IEEE Workshop on Hot Topics
in Operating Systems, Orcas Island, Wa, USA(4th-5th
May, 1995), Published by: IEEE Computer Society, NY
USA, May 1995.

[14]Walsh, T., Paciorek, N., and Wong, D., "Security and
Reliability in Concordia," Proceedings of the 31st
Hawaii International Conference on Systems Sciences,
VII:44-53, January 1998.

[15]http://www.objectspace.com/products/voyager/Index.as
p

[16]http://www.generalmagic.com

[17]http://www.cs.bham.ac.uk/~sra/Thesis/index.html

