On gf. γ -closed sets and g*f. γ -closed sets

박진한 · 박진근

Jin Han Park and Jin Keun Park Division of Mathematical Sciences, Pukyong National University

ABSTRACT

Park et al. [Proc. KFIS Fall Conf. 10(2) (2000), 59–62] defined fuzzy γ -open sets by using an operation γ on a fts (X,τ) and investigated the related fuzzy topological properties of the associated fuzzy topology τ_{γ} and τ . As generalizations of the notion of fuzzy γ -closed sets, we define gf. γ -closed sets and g*f. γ -closed sets and study basic properties of these sets relative to union and intersection. Also, we introduce and study two classes of fts's called fuzzy γ -T₊ and fuzzy γ -T_{1/2} spaces by using the notions of gf. γ -closed and g*f. γ -closed sets.

1. Introduction

In 1968, Chang[2] introduced the concept of a fuzzy topological space(in short, fts) by using the fuzzy set. Since then, many authors have contributed to the development of this theory.

Balasubramanian and Sundaram[1] introduced the notion of generalized fuzzy closed sets and study their properties in 1997. Recently, Park et al. [6] defined fuzzy γ -open sets by using an operation γ on a fts (X, τ) and investigated the related fuzzy topological properties of the associated fuzzy topology τ_{γ} and τ .

As generalizations of the notion of fuzzy γ -closed sets, we define gf. γ -closed sets and g*f. γ -closed sets and study basic properties of these sets relative to union and intersection. Also, we introduce and study two classes of fts's called fuzzy γ -T_{*} and fuzzy γ -T_{1/2} spaces by using the notions of gf. γ -closed and g*f. γ -closed sets.

An operation γ on the fuzzy topology τ is a mapping from τ into the fuzzy power set I^X of X such that $V \leq V^{\tau}$ for each $V \in \tau$, where V^{τ} denoted the value of γ at V. It is denoted by $\gamma: \tau \to I^X$. The opera-

tors defined by $\gamma(V) = \text{Int } (V)$, $\gamma(V) = \text{Cl}(V)$ and $\gamma(V) = \text{Int} (\text{Cl}(V))$ are examples of the operation γ .

Definition 1.1 [6] A subset A of a fts (X, τ) is called fuzzy γ -open in (X, τ) if for each fuzzy point $x_{\alpha} \in A$, there exists a fuzzy open set U containing x_{α} such that $U^{\gamma} \leq A$. τ_{γ} will denote the set of all fuzzy γ -open sets in (X, τ) .

Definition 1.2 [6] Let (X, τ) be a fts. An operation γ is said to be

- (a) regular if for every fuzzy open neighborhoods (simply, fo-nbd) U and V of each fuzzy point $x_{\alpha} \in X$, there exists a fo-nbd W of x_{α} such that $W^{\gamma} \le U^{\gamma} \wedge V^{\gamma}$;
- (b) open if for every fo-nbd U of each point $x_a \in X$, there exists a fuzzy γ -open set V such that $x_a \in V$ and $V \leq U^{\gamma}$.

Proposition 1.3 [6] Let $\gamma: \tau \rightarrow I^X$ be a regular operation on τ .

(a) If A and B are fuzzy γ -open, then $A \wedge B$ is

fuzzy γ -open.

(b) τ_{γ} is a fuzzy topology on X such that $\tau_{\gamma} \subseteq \tau$.

Definition 1.4 A fuzzy point x_{α} of X is in the *fuzzy* γ -closure [6] of fuzzy set A of X, denoted by $\operatorname{Cl}_{\gamma}(A)$, if $U^{\gamma}qA$ for any fo-q-nbd U of x_{α} . A fuzzy point x_{α} of X is in the *fuzzy* γ -interior of A, denoted by $\operatorname{Int}_{\gamma}(A)$, if $U^{\gamma} \leq A$ for some fo-q-nbd U of x_{α} .

Proposition 1.5 Let U be a fuzzy open set and let A be any fuzzy set of fts (X, τ) . If $A = U^{\tau}$, then $\operatorname{Cl}_{\tau}(A) = U^{\tau}$.

2. gf. γ -closed and g*f. γ -closed sets

In this section, we introduce the notion of gf. γ -closed and g*f. γ -closed sets investigate the relation between them.

Definition 2.1 A fuzzy set A of $fts(X, \tau)$ is said to be

- (a) generalized fuzzy γ -closed (shortly, gf. γ -closed) if $\operatorname{Cl}_{\gamma}(A) \leq U$ whenever $A \leq U$ and U is fuzzy open in (X, τ) .
- (b) generalized* fuzzy γ -closed (shortly, g*f. γ -closed) if $\operatorname{Cl}_{\gamma}(\Lambda) \leq U$ whenever $A \leq U$ and U is fuzzy γ -open in (X, τ) ;

Remark 2.2 From above definition and Definition 2.1 of [1], we obtain the following diagram:

fuzzy
$$\gamma$$
-closed \rightarrow gf. γ -closed \rightarrow g*f. γ -closed
$$\downarrow \qquad \qquad \downarrow$$
 fuzzy closed \rightarrow gf-closed

Example 2.3 Let $X=\{a,b,c\}$ and $\tau=\{1_X,0_X,$

$$A_1, A_2, A_3, A_4$$
 where

$$A_1(a) = 0.2$$
, $A_1(b) = A_1(c) = 0.8$;

$$A_2(a) = A_2(c) = 0.8$$
, $A_2(b) = 0.2$;

$$A_3(a) = A_3(b) = 0.2$$
, $A_3(c) = 0.8$;

$$A_4(a) = A_1(b) = A_4(c) = 0.8.$$

Let $\gamma: \tau \to I^X$ be an operation defined by $A_3^{\gamma} = A_3$ and $A^{\gamma} = \operatorname{Cl}(A)$ if $A \neq A_3$. Let B_i (i = 1, 2, 3, 4) be the fuzzy sets of X defined as follows:

$$B_1(a) = 0.5$$
, $B_1(b) = 0.4$, $B_1(c) = 0.6$;

$$B_2(a) = 0.2$$
, $B_2(b) = 0.8$, $B_2(c) = 0.2$;

$$B_3(a) = 0.2$$
, $B_3(b) = 0.9$, $B_3(c) = 0.2$;

$$B_4(a) = 0.2$$
, $B_4(b) = 0.2$, $B_4(c) = 0.2$.

Then we have

- (a) B_1 is $g*f. \gamma$ -closed but not gf-closed.
- (b) B_2 is fuzzy closed but not fuzzy γ -closed.
- (c) B_3 is gf. γ -closed but neither fuzzy γ -closed nor fuzzy closed.
- (d) B_4 is fuzzy closed but not g*f. γ -closed.

Theorem 2.4 For fuzzy subsets A, B of a fts X, the following statements are true:

- (a) If A and B are g*f. γ -closed, then $A \lor B$ is g*f. γ -closed.
- (b) If A and B are gf. γ -closed, then $A \lor B$ is gf. γ -closed.

However, the intersection of two gf. γ -closed (resp. g*f. γ -closed) sets need not gf. γ -closed (resp. g*f. γ -closed).

Example 2.5 Let (X, τ) be a fts given in Example 2.3.

(a) Let A and B be fuzzy sets defined as follows: A(a) = 0.1, A(b) = 0.1, A(c) = 0.9;

$$B(a) = 0.5$$
, $B(b) = 0.4$, $B(c) = 0.6$.

Then A and B are g*f. γ -closed but $A \wedge B$ is not g*f. γ -closed.

(b) Let A and B be fuzzy sets defined as follows: A(a) = 0.9, A(b) = 0.2, A(c) = 0.9;

$$B(a) = 0.2$$
, $B(b) = 0.9$, $B(c) = 0.2$

Then A and B are gf. γ -closed but $A \land B$ is not gf. γ -closed.

Theorem 2.6 Let $\gamma: \tau \rightarrow I^X$ be an open operation. (a) If A is g*f. γ -closed and if $A \leq B \leq \operatorname{Cl}_{\gamma}(A)$, then B is g*f. γ -closed.

(b) If A is gf. γ -closed and if $A \le B \le \operatorname{Cl}_{\gamma}(A)$,

Proceedings of KFIS 2001 Spring Conference, 2001. 5. 19

then B is gf. γ -closed.

Proof. (a): Let U be a fuzzy γ -open set such that $B \leq U$. Since $A \leq U$ and A is g*f. γ -closed, $\operatorname{Cl}_{\gamma}(A) \leq U$. But $\operatorname{Cl}_{\gamma}(B) \leq \operatorname{Cl}_{\gamma}(A)$ since operation γ is open. So $\operatorname{Cl}_{\gamma}(B) \leq U$ and hence B is g*f. γ -closed. (b): The proof is similar to (a).

By Remark 2.12 (c) in [6], we have following:

Corollary 2.7 Let $\gamma: \tau \to I^X$ be an open operation. (a) If A is g*f. γ -closed and if $A \le B \le \tau_{\gamma}$ -Cl(A) then B is g*f. γ -closed.

(b) If Λ is gf. γ -closed and if $\Lambda \leq B \leq \tau_{\gamma}$ -Cl(Λ) then Λ is gf. γ -closed.

3. gf. γ -open and g*f. γ -open sets

In this section we introduce the notions of gf. γ - open and g*f. γ -open sets and study their basic properties.

Definition 3.1 A fuzzy set A of a fts (X, τ) is called g*f. γ -open (resp. gf. γ -open) if the complement 1-A is g*f. γ -closed (resp. gf. γ -closed).

Theorem 3.2 (a) A fuzzy set A is g*f. γ -open if and only if $F \leq \operatorname{Int}_{\gamma}(A)$ whenever F is fuzzy γ -closed and $F \leq A$.

(b) A fuzzy set A is gf. γ -open if and only if $F \leq \operatorname{Int}_{\gamma}(A)$ whenever F is fuzzy closed and $F \leq A$.

Theorem 3.3 (a) If fuzzy γ is open and if A and B are fuzzy γ -separated (i.e., $\operatorname{Cl}_{\gamma}(A) \wedge B = 0_X = A \wedge \operatorname{Cl}_{\gamma}(B)$) g*f. γ -open sets, then $A \vee B$ is g*f. γ -open. (b) If A and B are fuzzy γ -separated gf. γ -open sets, then $A \vee B$ is gf. γ -open.

Proof. (a): Let F be a fuzzy γ -closed set and $F \leq A \vee B$. Since γ is open, $F \wedge \operatorname{Cl}_{\gamma}(A)$ is fuzzy γ -closed and $F \wedge \operatorname{Cl}_{\gamma}(A) \leq A$, and hence by Theorem 3.2 (a), $F \wedge \operatorname{Cl}_{\gamma}(A) \leq \operatorname{Int}_{\gamma}(A)$. Similarly, $F \wedge \operatorname{Cl}_{\gamma}(B) \leq$

 $Int_{\tau}(B)$. Now we have

$$F = F \wedge (A \vee B) \leq (F \wedge \operatorname{Cl}_{\gamma}(A)) \vee (F \wedge \operatorname{Cl}_{\gamma}(B))$$

$$\leq \operatorname{Int}_{\gamma}(A) \vee \operatorname{Int}_{\gamma}(B)$$

$$\leq \operatorname{Int}_{\gamma}(A \wedge B).$$

Hence $F \le \operatorname{Int}_{\gamma}(A \lor B)$ and thus $A \lor B$ is g*f. γ -open.

(b): The proof is similar to (a).

Remark 3.4 The union of two g*f. γ -open (resp. gf. γ -open) sets is generally not g*f. γ -open (resp. gf. γ -open) (see Example 2.5).

Theorem 3.5 Let γ be an open operation.

- (a) If ${\rm Int}_{\gamma}(A) \leq B \leq A$ and if A is g*f. γ -open, then B is g*f. γ -open.
- (b) If ${\rm Int}_{\gamma}(A) \leq B \leq A$ and if A is gf. γ -open, then B is gf. γ -open.

Corollary 3.6 Let γ be an open operation.

- (a) If τ_{γ} Int $_{\gamma}(A) \leq B \leq A$ and if A is g*f. γ -open, then B is g*f. γ -open.
- (b) If τ_{γ} Int $_{\gamma}(A) \leq B \leq A$ and if A is gf. γ -open, then B is gf. γ -open.

Preserving on gf. γ-closed and g*f. γ-closed sets

In this section we introduce the notions of fuzzy γ - $T_{1/2}$ and fuzzy γ - T_* spaces and study their basic the properties by using the concept of gf. γ -closed and g*f. γ -open set.

Definition 4.1 A fts (X, γ) is called

- (a) fuzzy γ $T_{1/2}$ if every g*f. γ -closed set is fuzzy γ -closed.
- (b) fuzzy γ T_{\star} if every gf. γ -closed set is fuzzy γ -closed.

Theorem 4.2 For a fts (X, τ) the following are true: (a) If (X, τ) is fuzzy $\gamma - T_*$, then $\{x_a\}$ is fuzzy closed or fuzzy γ -open in (X,τ) for each fuzzy point x_{α} . (b) If (X,τ) is fuzzy γ - $T_{1/2}$, then $\{x_{\alpha}\}$ is fuzzy γ -closed or fuzzy γ -open in (X,τ) for each fuzzy point x_{α} .

Proof. (a): If $\{x_{\alpha}\}$ is not fuzzy closed, then $1-\{x_{\alpha}\}$ is not fuzzy open and thus gf. γ -closed. By hypothesis, $1-\{x_{\alpha}\}$ is fuzzy γ -closed, i.e. $\{x_{\alpha}\}$ is fuzzy γ -open. (b): The proof is similar to (a).

Every fuzzy γ - $T_{1/2}$ space is fuzzy γ - T_* but the reverse implication is not true.

Example 4.3 Let $X=\{a,b,c\}$ and $\tau=\{1_X,0_X,A_1,A_2,A_3,A_4\}$ where

$$A_1(a) = 1$$
, $A_1(b) = A_1(c) = 0$;
 $A_2(a) = A_2(c) = 0$, $A_2(b) = 1$;
 $A_3(a) = A_3(b) = 1$, $A_3(c) = 0$;
 $A_4(a) = A_4(c) = 1$, $A_4(b) = 0$.

Let $\gamma \colon \tau \to I^X$ be an operation defined by $0_X^{\gamma} = 0_X$, $A^{\gamma} = A$ if $A = A_1$ and $A^{\gamma} = 1_X$ if $(0_X \neq) A \neq A_1$. Then (X, τ) is fuzzy $\gamma - T_*$ space but not fuzzy $\gamma - T_{1/2}$.

Throughout the rest of this section, let (X, τ) and (Y, σ) be fuzzy topological space and let $\gamma \colon \tau \to I^X$ and $\beta \colon \sigma \to I^Y$ be operations on τ and σ , respectively. Let id be an identity operation.

Definition 4.4 A mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ said to be

- (a) fuzzy (γ , β)-continuous [7] if for each fuzzy point x_{α} in X and each fo-q-nbd V containing $f(x_{\alpha})$, there exists a fo-q-nbd U of x_{α} such that $f(U') \leq V^{\beta}$;
- (b) fuzzy (γ, β) -closed if for any fuzzy γ -closed F of (X, τ) , f(F) is fuzzy β -closed in (Y, σ) .

Proposition 4.5 Suppose that $f: (X, \tau) \rightarrow (Y, \sigma)$ is a fuzzy (id, β) -closed mapping.

(a) If A is gf. γ -closed in X and if f is fuzzy continuous,

then f(A) is gf. β -closed in Y.

- (b) If A is g*f. γ -closed in X and if f is fuzzy (γ ,id)-continuous, then f(A) is gf. β -closed in Y.
- (c) If A is gf. γ -closed in X and if f is fuzzy (id, β) -continuous, then f(A) is g*f. β -closed in Y.

Theorem 4.6 Suppose that $f: (X, \tau) \to (Y, \sigma)$ is fuzzy (id, β) -closed injective mapping.

- (a) If (Y, σ) is fuzzy β T_* and if f is fuzzy continuous and fuzzy (γ, β) -continuous, then (X, τ) is fuzzy γ T_* .
- (b) If (Y, σ) is fuzzy βT_* and if f is fuzzy (γ, id) -continuous, then (X, τ) is fuzzy $\gamma T_{1/2}$.
- (c) If (Y, σ) is fuzzy $\beta T_{1/2}$ and if f is fuzzy (γ, β) -continuous, then (X, τ) is fuzzy γT_* .

References

- [1] G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems 86 (1997), 93-100.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.
- [3] S. Ganguly and S. Saha, On separation axioms and T_i-fuzzy continuity, Fuzzy Sets and Systems 16 (1985), 265-275.
- [4] P. P. Ming and L. Y. Ming, Fuzzy topology. II. Product and quotient spaces, J. Math. Anal. Appl. 77 (1980), 20-37.
- [5] J. H. Park, J. R. Choi and B. Y. Lee, On fuzzy θ -continuous mappings, Fuzzy Sets and Systems 54 (1993), 107-113.
- [6] J. H. Park, J. K. Park and S. J. Park, Operations on fuzzy topological spaces, Precedings of KFIS Fall Conference 2000, 10(2) (2000), 59-62.
- [7] S. Saha, Fuzzy-continuous mappings, J. Math. Anal. Appl. 126 (1987), 130-142.