On gf. γ -closed sets and g*f. γ -closed sets ## 박진한 · 박진근 Jin Han Park and Jin Keun Park Division of Mathematical Sciences, Pukyong National University #### ABSTRACT Park et al. [Proc. KFIS Fall Conf. 10(2) (2000), 59–62] defined fuzzy γ -open sets by using an operation γ on a fts (X,τ) and investigated the related fuzzy topological properties of the associated fuzzy topology τ_{γ} and τ . As generalizations of the notion of fuzzy γ -closed sets, we define gf. γ -closed sets and g*f. γ -closed sets and study basic properties of these sets relative to union and intersection. Also, we introduce and study two classes of fts's called fuzzy γ -T₊ and fuzzy γ -T_{1/2} spaces by using the notions of gf. γ -closed and g*f. γ -closed sets. #### 1. Introduction In 1968, Chang[2] introduced the concept of a fuzzy topological space(in short, fts) by using the fuzzy set. Since then, many authors have contributed to the development of this theory. Balasubramanian and Sundaram[1] introduced the notion of generalized fuzzy closed sets and study their properties in 1997. Recently, Park et al. [6] defined fuzzy γ -open sets by using an operation γ on a fts (X, τ) and investigated the related fuzzy topological properties of the associated fuzzy topology τ_{γ} and τ . As generalizations of the notion of fuzzy γ -closed sets, we define gf. γ -closed sets and g*f. γ -closed sets and study basic properties of these sets relative to union and intersection. Also, we introduce and study two classes of fts's called fuzzy γ -T_{*} and fuzzy γ -T_{1/2} spaces by using the notions of gf. γ -closed and g*f. γ -closed sets. An operation γ on the fuzzy topology τ is a mapping from τ into the fuzzy power set I^X of X such that $V \leq V^{\tau}$ for each $V \in \tau$, where V^{τ} denoted the value of γ at V. It is denoted by $\gamma: \tau \to I^X$. The opera- tors defined by $\gamma(V) = \text{Int } (V)$, $\gamma(V) = \text{Cl}(V)$ and $\gamma(V) = \text{Int} (\text{Cl}(V))$ are examples of the operation γ . **Definition 1.1 [6]** A subset A of a fts (X, τ) is called fuzzy γ -open in (X, τ) if for each fuzzy point $x_{\alpha} \in A$, there exists a fuzzy open set U containing x_{α} such that $U^{\gamma} \leq A$. τ_{γ} will denote the set of all fuzzy γ -open sets in (X, τ) . **Definition 1.2 [6]** Let (X, τ) be a fts. An operation γ is said to be - (a) regular if for every fuzzy open neighborhoods (simply, fo-nbd) U and V of each fuzzy point $x_{\alpha} \in X$, there exists a fo-nbd W of x_{α} such that $W^{\gamma} \le U^{\gamma} \wedge V^{\gamma}$; - (b) open if for every fo-nbd U of each point $x_a \in X$, there exists a fuzzy γ -open set V such that $x_a \in V$ and $V \leq U^{\gamma}$. **Proposition 1.3 [6]** Let $\gamma: \tau \rightarrow I^X$ be a regular operation on τ . (a) If A and B are fuzzy γ -open, then $A \wedge B$ is fuzzy γ -open. (b) τ_{γ} is a fuzzy topology on X such that $\tau_{\gamma} \subseteq \tau$. **Definition 1.4** A fuzzy point x_{α} of X is in the *fuzzy* γ -closure [6] of fuzzy set A of X, denoted by $\operatorname{Cl}_{\gamma}(A)$, if $U^{\gamma}qA$ for any fo-q-nbd U of x_{α} . A fuzzy point x_{α} of X is in the *fuzzy* γ -interior of A, denoted by $\operatorname{Int}_{\gamma}(A)$, if $U^{\gamma} \leq A$ for some fo-q-nbd U of x_{α} . **Proposition 1.5** Let U be a fuzzy open set and let A be any fuzzy set of fts (X, τ) . If $A = U^{\tau}$, then $\operatorname{Cl}_{\tau}(A) = U^{\tau}$. ### 2. gf. γ -closed and g*f. γ -closed sets In this section, we introduce the notion of gf. γ -closed and g*f. γ -closed sets investigate the relation between them. **Definition 2.1** A fuzzy set A of $fts(X, \tau)$ is said to be - (a) generalized fuzzy γ -closed (shortly, gf. γ -closed) if $\operatorname{Cl}_{\gamma}(A) \leq U$ whenever $A \leq U$ and U is fuzzy open in (X, τ) . - (b) generalized* fuzzy γ -closed (shortly, g*f. γ -closed) if $\operatorname{Cl}_{\gamma}(\Lambda) \leq U$ whenever $A \leq U$ and U is fuzzy γ -open in (X, τ) ; **Remark 2.2** From above definition and Definition 2.1 of [1], we obtain the following diagram: fuzzy $$\gamma$$ -closed \rightarrow gf. γ -closed \rightarrow g*f. γ -closed $$\downarrow \qquad \qquad \downarrow$$ fuzzy closed \rightarrow gf-closed Example 2.3 Let $X=\{a,b,c\}$ and $\tau=\{1_X,0_X,$ $$A_1, A_2, A_3, A_4$$ where $$A_1(a) = 0.2$$, $A_1(b) = A_1(c) = 0.8$; $$A_2(a) = A_2(c) = 0.8$$, $A_2(b) = 0.2$; $$A_3(a) = A_3(b) = 0.2$$, $A_3(c) = 0.8$; $$A_4(a) = A_1(b) = A_4(c) = 0.8.$$ Let $\gamma: \tau \to I^X$ be an operation defined by $A_3^{\gamma} = A_3$ and $A^{\gamma} = \operatorname{Cl}(A)$ if $A \neq A_3$. Let B_i (i = 1, 2, 3, 4) be the fuzzy sets of X defined as follows: $$B_1(a) = 0.5$$, $B_1(b) = 0.4$, $B_1(c) = 0.6$; $$B_2(a) = 0.2$$, $B_2(b) = 0.8$, $B_2(c) = 0.2$; $$B_3(a) = 0.2$$, $B_3(b) = 0.9$, $B_3(c) = 0.2$; $$B_4(a) = 0.2$$, $B_4(b) = 0.2$, $B_4(c) = 0.2$. Then we have - (a) B_1 is $g*f. \gamma$ -closed but not gf-closed. - (b) B_2 is fuzzy closed but not fuzzy γ -closed. - (c) B_3 is gf. γ -closed but neither fuzzy γ -closed nor fuzzy closed. - (d) B_4 is fuzzy closed but not g*f. γ -closed. **Theorem 2.4** For fuzzy subsets A, B of a fts X, the following statements are true: - (a) If A and B are g*f. γ -closed, then $A \lor B$ is g*f. γ -closed. - (b) If A and B are gf. γ -closed, then $A \lor B$ is gf. γ -closed. However, the intersection of two gf. γ -closed (resp. g*f. γ -closed) sets need not gf. γ -closed (resp. g*f. γ -closed). **Example 2.5** Let (X, τ) be a fts given in Example 2.3. (a) Let A and B be fuzzy sets defined as follows: A(a) = 0.1, A(b) = 0.1, A(c) = 0.9; $$B(a) = 0.5$$, $B(b) = 0.4$, $B(c) = 0.6$. Then A and B are g*f. γ -closed but $A \wedge B$ is not g*f. γ -closed. (b) Let A and B be fuzzy sets defined as follows: A(a) = 0.9, A(b) = 0.2, A(c) = 0.9; $$B(a) = 0.2$$, $B(b) = 0.9$, $B(c) = 0.2$ Then A and B are gf. γ -closed but $A \land B$ is not gf. γ -closed. **Theorem 2.6** Let $\gamma: \tau \rightarrow I^X$ be an open operation. (a) If A is g*f. γ -closed and if $A \leq B \leq \operatorname{Cl}_{\gamma}(A)$, then B is g*f. γ -closed. (b) If A is gf. γ -closed and if $A \le B \le \operatorname{Cl}_{\gamma}(A)$, Proceedings of KFIS 2001 Spring Conference, 2001. 5. 19 then B is gf. γ -closed. **Proof.** (a): Let U be a fuzzy γ -open set such that $B \leq U$. Since $A \leq U$ and A is g*f. γ -closed, $\operatorname{Cl}_{\gamma}(A) \leq U$. But $\operatorname{Cl}_{\gamma}(B) \leq \operatorname{Cl}_{\gamma}(A)$ since operation γ is open. So $\operatorname{Cl}_{\gamma}(B) \leq U$ and hence B is g*f. γ -closed. (b): The proof is similar to (a). By Remark 2.12 (c) in [6], we have following: **Corollary 2.7** Let $\gamma: \tau \to I^X$ be an open operation. (a) If A is g*f. γ -closed and if $A \le B \le \tau_{\gamma}$ -Cl(A) then B is g*f. γ -closed. (b) If Λ is gf. γ -closed and if $\Lambda \leq B \leq \tau_{\gamma}$ -Cl(Λ) then Λ is gf. γ -closed. #### 3. gf. γ -open and g*f. γ -open sets In this section we introduce the notions of gf. γ - open and g*f. γ -open sets and study their basic properties. **Definition 3.1** A fuzzy set A of a fts (X, τ) is called g*f. γ -open (resp. gf. γ -open) if the complement 1-A is g*f. γ -closed (resp. gf. γ -closed). **Theorem 3.2** (a) A fuzzy set A is g*f. γ -open if and only if $F \leq \operatorname{Int}_{\gamma}(A)$ whenever F is fuzzy γ -closed and $F \leq A$. (b) A fuzzy set A is gf. γ -open if and only if $F \leq \operatorname{Int}_{\gamma}(A)$ whenever F is fuzzy closed and $F \leq A$. **Theorem 3.3** (a) If fuzzy γ is open and if A and B are fuzzy γ -separated (i.e., $\operatorname{Cl}_{\gamma}(A) \wedge B = 0_X = A \wedge \operatorname{Cl}_{\gamma}(B)$) g*f. γ -open sets, then $A \vee B$ is g*f. γ -open. (b) If A and B are fuzzy γ -separated gf. γ -open sets, then $A \vee B$ is gf. γ -open. **Proof.** (a): Let F be a fuzzy γ -closed set and $F \leq A \vee B$. Since γ is open, $F \wedge \operatorname{Cl}_{\gamma}(A)$ is fuzzy γ -closed and $F \wedge \operatorname{Cl}_{\gamma}(A) \leq A$, and hence by Theorem 3.2 (a), $F \wedge \operatorname{Cl}_{\gamma}(A) \leq \operatorname{Int}_{\gamma}(A)$. Similarly, $F \wedge \operatorname{Cl}_{\gamma}(B) \leq$ $Int_{\tau}(B)$. Now we have $$F = F \wedge (A \vee B) \leq (F \wedge \operatorname{Cl}_{\gamma}(A)) \vee (F \wedge \operatorname{Cl}_{\gamma}(B))$$ $$\leq \operatorname{Int}_{\gamma}(A) \vee \operatorname{Int}_{\gamma}(B)$$ $$\leq \operatorname{Int}_{\gamma}(A \wedge B).$$ Hence $F \le \operatorname{Int}_{\gamma}(A \lor B)$ and thus $A \lor B$ is g*f. γ -open. (b): The proof is similar to (a). **Remark 3.4** The union of two g*f. γ -open (resp. gf. γ -open) sets is generally not g*f. γ -open (resp. gf. γ -open) (see Example 2.5). **Theorem 3.5** Let γ be an open operation. - (a) If ${\rm Int}_{\gamma}(A) \leq B \leq A$ and if A is g*f. γ -open, then B is g*f. γ -open. - (b) If ${\rm Int}_{\gamma}(A) \leq B \leq A$ and if A is gf. γ -open, then B is gf. γ -open. Corollary 3.6 Let γ be an open operation. - (a) If τ_{γ} Int $_{\gamma}(A) \leq B \leq A$ and if A is g*f. γ -open, then B is g*f. γ -open. - (b) If τ_{γ} Int $_{\gamma}(A) \leq B \leq A$ and if A is gf. γ -open, then B is gf. γ -open. ## Preserving on gf. γ-closed and g*f. γ-closed sets In this section we introduce the notions of fuzzy γ - $T_{1/2}$ and fuzzy γ - T_* spaces and study their basic the properties by using the concept of gf. γ -closed and g*f. γ -open set. **Definition 4.1** A fts (X, γ) is called - (a) fuzzy γ $T_{1/2}$ if every g*f. γ -closed set is fuzzy γ -closed. - (b) fuzzy γ T_{\star} if every gf. γ -closed set is fuzzy γ -closed. Theorem 4.2 For a fts (X, τ) the following are true: (a) If (X, τ) is fuzzy $\gamma - T_*$, then $\{x_a\}$ is fuzzy closed or fuzzy γ -open in (X,τ) for each fuzzy point x_{α} . (b) If (X,τ) is fuzzy γ - $T_{1/2}$, then $\{x_{\alpha}\}$ is fuzzy γ -closed or fuzzy γ -open in (X,τ) for each fuzzy point x_{α} . **Proof.** (a): If $\{x_{\alpha}\}$ is not fuzzy closed, then $1-\{x_{\alpha}\}$ is not fuzzy open and thus gf. γ -closed. By hypothesis, $1-\{x_{\alpha}\}$ is fuzzy γ -closed, i.e. $\{x_{\alpha}\}$ is fuzzy γ -open. (b): The proof is similar to (a). Every fuzzy γ - $T_{1/2}$ space is fuzzy γ - T_* but the reverse implication is not true. **Example 4.3** Let $X=\{a,b,c\}$ and $\tau=\{1_X,0_X,A_1,A_2,A_3,A_4\}$ where $$A_1(a) = 1$$, $A_1(b) = A_1(c) = 0$; $A_2(a) = A_2(c) = 0$, $A_2(b) = 1$; $A_3(a) = A_3(b) = 1$, $A_3(c) = 0$; $A_4(a) = A_4(c) = 1$, $A_4(b) = 0$. Let $\gamma \colon \tau \to I^X$ be an operation defined by $0_X^{\gamma} = 0_X$, $A^{\gamma} = A$ if $A = A_1$ and $A^{\gamma} = 1_X$ if $(0_X \neq) A \neq A_1$. Then (X, τ) is fuzzy $\gamma - T_*$ space but not fuzzy $\gamma - T_{1/2}$. Throughout the rest of this section, let (X, τ) and (Y, σ) be fuzzy topological space and let $\gamma \colon \tau \to I^X$ and $\beta \colon \sigma \to I^Y$ be operations on τ and σ , respectively. Let id be an identity operation. **Definition 4.4** A mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ said to be - (a) fuzzy (γ , β)-continuous [7] if for each fuzzy point x_{α} in X and each fo-q-nbd V containing $f(x_{\alpha})$, there exists a fo-q-nbd U of x_{α} such that $f(U') \leq V^{\beta}$; - (b) fuzzy (γ, β) -closed if for any fuzzy γ -closed F of (X, τ) , f(F) is fuzzy β -closed in (Y, σ) . **Proposition 4.5** Suppose that $f: (X, \tau) \rightarrow (Y, \sigma)$ is a fuzzy (id, β) -closed mapping. (a) If A is gf. γ -closed in X and if f is fuzzy continuous, then f(A) is gf. β -closed in Y. - (b) If A is g*f. γ -closed in X and if f is fuzzy (γ ,id)-continuous, then f(A) is gf. β -closed in Y. - (c) If A is gf. γ -closed in X and if f is fuzzy (id, β) -continuous, then f(A) is g*f. β -closed in Y. **Theorem 4.6** Suppose that $f: (X, \tau) \to (Y, \sigma)$ is fuzzy (id, β) -closed injective mapping. - (a) If (Y, σ) is fuzzy β T_* and if f is fuzzy continuous and fuzzy (γ, β) -continuous, then (X, τ) is fuzzy γ T_* . - (b) If (Y, σ) is fuzzy βT_* and if f is fuzzy (γ, id) -continuous, then (X, τ) is fuzzy $\gamma T_{1/2}$. - (c) If (Y, σ) is fuzzy $\beta T_{1/2}$ and if f is fuzzy (γ, β) -continuous, then (X, τ) is fuzzy γT_* . #### References - [1] G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems 86 (1997), 93-100. - [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190. - [3] S. Ganguly and S. Saha, On separation axioms and T_i-fuzzy continuity, Fuzzy Sets and Systems 16 (1985), 265-275. - [4] P. P. Ming and L. Y. Ming, Fuzzy topology. II. Product and quotient spaces, J. Math. Anal. Appl. 77 (1980), 20-37. - [5] J. H. Park, J. R. Choi and B. Y. Lee, On fuzzy θ -continuous mappings, Fuzzy Sets and Systems 54 (1993), 107-113. - [6] J. H. Park, J. K. Park and S. J. Park, Operations on fuzzy topological spaces, Precedings of KFIS Fall Conference 2000, 10(2) (2000), 59-62. - [7] S. Saha, Fuzzy-continuous mappings, J. Math. Anal. Appl. 126 (1987), 130-142.