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1. INTRODUCTION

To obtain the dynamic response of a large civil structure, it is economic and efficient to
superpose the results of a few lowest modes. Therefore, there has been proposed many
eigensolution techniques which can find only a set of the lowest modes. The Lanczos and
subspace method are belong to this type of technique. In these techniques, however, some
important modes can be missed in the calculation process, which may lead to poor results in
dynamic analysis. Hence, a checking technique for missed eigenvalues is required in finding the
missed one. For the case of undamped system or proportionally damped system, it can be easily
found by using the Sturm sequence property [1-4].

However, in the case of the non-proportionally damped systems such as the soil-structure
interaction system, the structural control system and composite structures, no counterpart of the
Sturm sequence property for undamped systems has been developed yet [5]. Hence, when some

important modes are missed for those systems, it may leads to poor results in dynamic analysis.

+ @zBled ELFY WARA
» a2de)ed E2FHY AR
v gzBerled ESFD nS, Y

- 172 -



A number of researchers [6,7] have been performed to solve the eigenproblem with the
damping matrix, whereas there have been few studies on a technique to calculate the number of
eigenvalues in this case in the literature. Jung et al. [8] proposed a technique of checking missed
eigenvalues for eigenproblem with damping matrix using argument principle. This method requires
a selection of checking points and the LDL” factorization of the characteristic polynomial at
those points. The accuracy of the method increases with the number of checking points, so it
need more factorization processes to get more exact results.

In this paper, Gleyse's theorem [9], which can count the number of zeros of a characteristic
polynomial inside an open unit disk, is used to calculate the number of eigenvalues for
eigenproblem with the damping matrix. The characteristic polynomial of an eigenvalue problem is
determined by using Chen's algorithm [10] which is considered as both stable and effective. The
determinants(minors). of the leading principal submatrices of order i in the Schur-Cohn matrix can
be easily calculated by the LDL™ factorization process and the final result obtained is very
similar to the Sturm sequence property for undamped systems.

This paper is organized as follows. The modified Sturm sequence property is presented and
discussed in Chapter 2. In Chapter 3, a numerical example is analyzed to verify the effectiveness

of the proposed method. Finally, the concluding remarks are expressed in Chapter 4.
2. MODIFIED STURM SEQUENCE PROPERTY FOR DAMPED SYSTEMS

2.1. The equations of motion of damped systems
In the analysis of dynamic response of structural system, the equation of motion of damped
systems can be written as:

Mu()+ Cu(D+ Ku(p) =0, M
where M,K and C are the (#xn) mass, stiffness and nonclassical damping matrices,
respectively, and z(#), u(#) and u(#) are the (nxl) acceleration, velocity and displacement
vectors, respectively. To find the solution of the free vibration of the system, we consider the
following quadratic eigenproblem:

MMO+ACH+Ko=0, 2

in which Aand ¢ are the eigenvalue and eigenvector of the system. There are 2n eigenvalues

for the system with » degrees of freedom and these occur either in real pairs or in complex

conjugate pairs, depending upon whether they correspond to overdamped or undamped modes.
The common practice is to reformulate the quadratic system of equation to a linear one by

doubling the order of the system [6,7] such as:

I A M )

In general, M and C nonsingular, that is, deM)+0 and det(C)+0, so the above equation can
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be changed to the form of a standard eigenproblem:
Ay =y, 4)

[ 0 1 ] {¢}
A= -1 a~p¥ =
-M7K -M"C Ab . (5)

Observing the above Equation (5), when the mass matrix A is lumped or banded, the change to

where

the standard eigenproblem can be accomplished without much increase in computing time. The

characteristic polynomial of Equation (4) can be represented as:

27
P(A)=det(A—AD) = @, A" +a,, A" 4+ al+a, =) aX =0, ©
i=0

where Xis a complex value and z{¢=0,1,--,2n) are the real coefficients.

2.2. The coefficient of the characteristic polynomial
Chen [10] suggested a stable algorithm to obtain the coefficients of the characteristic

polynomial of a real square matrix. According to his algorithm some given matrix A4:

a, Ayt Qg a,an
a Gyt Qgm0 32n
i . . . :
Dont Fnm1z 7 Gapnrant Ganeran
Qi Gy " ey 2,5, | ™
can be transformed to 4 :
T T O -4 —4q
1 0 0 0
A= :
0 0 0 0
0 0 Y | ol ®)

by applying a sequence of Gauss-elimination like similarity transformations. When some
numerical instability occurs during the transformations, modified algorithm by Chen {10] can be
used. Since 4 was obtained by applying similar transformations to A4, the eigenvalues and
eigenvectors of both 4 and A4 are same. The characteristic polynomial of 4, P(}) =det( A—Al
can be obtained by observing the transformed matrix 4, and the characteristic polynomial is:

P(L)=det(A~M)=det(A - M) =A" +a,, A"+ +aA+a, =0, (a, =1) )
2.3. The number of eigenvalues in an open unit disk.

Gleyse [9] suggested a method of checking the number of eigenvalues of a real polynomial

inside an open unit disk by a determinant representation.
Let P(A)= goa,{{h = (0 (a, is a real number) then the number of eigenvalues inside the

open unit disk can be determined as:

N, =2n-5[i,d,,d,,-.d,, (10)
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where N, is the number of eigenvalues in an open unit disk, 2n is the degree of the polynomial,
Slkq. k1, Ry, -, ky,] is the number of sign changes in the sequence 2(i=0,1,---,2»n) and
d{i=1,2,-+,2n) is the determinants(minors) of the leading principal submatrices of order i in

the Schur-Cohn matrix T:

. min(,,jé
T= t s Ly = Z n-i+h@an_jon ~ BinQjp
. S

h= . an
The process of calculating the number of eigenvalues using the above theorem requires the
calculation of the characteristic polynomial of a given matrix, the construction of the Schur-Cohn
matrix T and the calculation of the determinants (minors) of the leading principal submatrices of
order i in the Schur-Cohn matrix T. The coefficients of the characteristic polynomial of a given
matrix can be determined by applying previous Chens algorithm, and by using these coefficients,
cach elements of the Schur-Cohn matrix can be obtained using Equation (11). The
determinants(minors) of the leading principal submatrices of order i in the Schur-Cohn matrix T
can be easily determined by applying LDL™ factorization of T, which is described in the
following section.
2.4. Modified Sturm sequence property.

Gleyse's theorem [9] considers only about the number of eigenvalues in an open unit disk. To

apply his theorem for an open disks of arbitrary radius p, substitute A= pﬁ( o is an real

number) to Equation (6), then:
P(X)=a,,p¥ A" +a,, ,p ' A" +---+a,pk +a,

=@, A" 48, A e+ +a=Y AN =0,

e (12)
where a;=a;0'(i=0,1, -, 2n)are modified coefficients.

Using the modified coefficients ;,»(z'=0,1,---,2n) in Equation (12), His theorem can be
extended to calculate the number of eigenvalues in the open disks of arbitrary radius p. The
calculation of d(i=1,2,:-,2n) can be easily performed by the LDL™ factorization of the
Schur-Cohn matrix 7. If T=LDL", then:

T,=LDL (13)
where T; is the leading principal submatrices of order i in the 7, L; is the leading principal
submatrices of order i in the L and D; is the leading principal submatrices of order i in the D.
Therefore each d{(i=1,2,,2n) can be easily obtained as:

d, =dey(T) = det(L,D,LT) = det(D,)

=du"dzz’<“'>‘dﬁ=l]ldm (14)

Considering Equation (10), we only need to know the signs of each ¢, because the unknown
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value of S[1,d,,d,, ", ds,] depends only on sign changes of each d(i=1,2, --,2xn) and from
Equation (14) the signs of each d; can be determined from the number of negative elements of
each diagonal elements of D,, which is very similar to Strum sequence property for undamped

systems.
3. NUMERICAL EXAMPLES

To show the effectiveness of the proposed method, the plane frame structure with lumped
dampers which has multiple eigenvalues is considered.
3.1. Plane frame structure with lumped dampers

In this example, a plane frame structure with lumped dampers is presented. The geometric
configuration and material properties are shown in Figure 1. The model is discretized in 12
beam elements resulting in the system of dynamic equation with a total of 18 degrees of
freedom. Thus, the order of the associated eigenproblem is 36. The consistent mass matrix is
derived from the classical damping given by C=oK+8M and concentrated dampers. All the
eigenvalues are calculated by the Lanczos method developed by Kim and Lee [7] and their
radius from the origin in the complex plane are calculated by p,=|A, as in Table I. Two First
two cases are for checking in between eigenvalues. The third is for checking all the eigenvalues

of the system. The radius of the open disk is determined by ©=1.005/1].

—-D—[: Youngs Modulus: 1000
. Mass Density: 1.0
_IH Cross-section Inertia: 1.0
| f <} Cross-section Area: 1.0
B Span Length: 6.0
. Concentrated Damping: 0.3

. Rayleigh Damping Coeff.:
= @=0.001, 8=0.001

|
AN

T

Figure 1. Plane frame structure with lumped dampers.
For each case calculated coefficient of the characteristic polynomial;,- and sign of d; are as in
Table 1. Using the sign of d; Table I, the number of eigenvalues for each cases are calcuiated

as followings:

Case 1: P=1005A,| g1 555
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N, =2n-Sh4,.d,, - ,d,

N, =36 - 24 =12

Case 2: P =1.005A,|= 203 681

NA = 2n—S[1,d|,d2,"‘,dz,,

n

Table I. The calculated eigenvalues, characteric coefficient ;,» and sign of d;

Eigenvalues(2 ) Radius | #=1-005/1l =81.555 | o= 1.005/43| = 203.68| o= 1.005|Ax| = 219.12
i
Real |Imaginary|( p=|A|) Z sign{d) 2 sign(d) a; sign(d;)

0 - - - 3.002e+11 + 1.000e+05 + 3.002e+11 +
1] -1.1369 | -46.2187 | 46.2327 | 4.492e+11 - 3.737e+05 + 1.207e+12 +
2| -1.1369 | -46.2187 | 46.2327 || 5.594e+12 + 1.162e+07 + 4.039e+13 +
31 -1.1369 | -46.2187 | 46.2327 | 7.588e+12 - 3.937e+07 + 1.472e+14 +
41 -1.1369 | -46.2187 | 46.2327 | 4.588e+13 + 5.946e+08 + 2.391e+15 +
51 -1.3731 | -51.1333 | 51.1517 | 5.630e+13 - 1.822e+09 + 7.883e+15 +
61 -1.3731 | -51.1333 | 51.1517 | 2.193e+14 + 1.772¢+10 + 8.249¢+16 +
71 -1.3731 | -51.1333 | 51.1517 | 2.428e+14 - 4.903e+10 + 2.455e+17 +
8(-1.3731 | -51.1333 | 51.1517 || 6.826e+14 + 3.441e+11 + 1.854e+18 +
91 -3.3902 | -81.0872 | 81.1490 || 6.804e+14 - 8.567¢e+11 + 4.965¢+18 +
10| -3.3902 | -81.0872 | 81.1490 || 1.468e+15 + 4.615e+12 + 2.877e+19 +
11| -3.3902 | -81.0872 | 81.1490 {| 1.313e+15 - 1.031e+13 + 6.914e+19 +
12| -3.3902 | -81.0872 | 81.1490 || 2.258e+15 + 4.429¢+13 + 3.196e+20 +
13| -3.9407 | -87.4771 | 87.5659 1.806e+15 - 8.847¢+13 + 6.868e+20 +
14| -3.9407 | -87.4771 | 87.5659 | 2.544e+15 + 3.112e+14 + 2.599e+21 +
15| -3.9407 | -87.4771 | 87.5659 1.812¢+15 - 5.537e+14 + 4.975e+21 +
16| -3.9407 | -87.4771 | 87.5659 [ 2.128e+15 - 1.624¢e+15 + 1.570e+22 +
17| -8.1642 |-127.4394| 127.7006 | 1.345e+15 + 2.563¢+15 + 2.665¢+22 +
18| -8.1642 {-127.4394| 127.7006 | 1.335e¢+15 - 6.353e+15 + 7.106e+22 +
19| -8.1642 |-127.4394| 127.7006 | 7.43%e+14 - 8.843e+15 + 1.064e+23 +
20| -8.1642 |-127.4394| 127.7006| 6.297e+14 - 1.870e+16 + 2.420e+23 +
21|-10.2629 {-142.8367| 143.2049 ] 3.074e+14 + 2.279%+16 + 3.174e+23 +
22|-10.2629 |-142.8367 | 143.2049 ] 2.234e+14 + 4.137e+16 + 6.198e+23 +
23|-10.2629 {-142.8367| 143.2049 ] 9.457¢+13 - 4.374¢+16 + 7.051e+23 +
24(-10.2629 |-142.8367| 143.2049| 5.923e+13 - 6.841et+16 + 1.186¢+24 +
25|-14.8662 {-171.7301| 172.3720} 2.146e+13 + 6.189%¢+16 + 1.155¢+24 +
26|-14.8662 |-171.7301 | 172.3720| 1.159e+13 - 8.350e+16 + 1.676e+24 +
27|-14.8662 {-171.7301| 172.3720|| 3.522e+12 - 6.337e+16 + 1.368¢+24 +
28|-14.8662 {-171.7301| 172.3720|| 1.639e+12 - 7.364e+16 + 1.711e+24 +
29|-20.5387 {-201.6249|202.6683 | 4.050e+11 - 4.545e+16 - 1.136e+24 +
30(-20.5387 {-201.6249| 202.6683 [ 1.616e+11 + 4.528e+16 + 1.217e+24 +
31|-20.5387 {-201.6249| 202.6683 | 3.080e+10 - 2.156e+16 - 6.236e+23 +
32(-20.5387 |-201.6249}202.6683 | 1.044e¢+10 - 1.826e+16 - 5.682e+23 +
331-23.76991-216.7332|218.0328 | 1.386e+09 + 6.051¢+15 - 2.026e+23 +
34(-23.7699 1-216.7332|218.0328 | 3.940e+08 + 4.296¢e+15 + 1.547e+23 +
35|-23.7699 |-216.7332{218.0328 | 2.783e+07 + 7.579%+14 + 2.937e+22 +
36(-23.7699 |-216.7332|218.0328 | 6.490e+06 + 4.414e+14 + 1.840e+22 +

* sign(d,) represents the sign of d; , so sign(d)) is '+ when ;>0 and sign(d) is = when 4<0.

dy is defined as equal to 1.
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Ny =36-4=32

Case 4: P =1.005k3| =219 123
N, =2n-S[i.d,,d,,,d,,
N, =36-0=36
Referring to Table I, the number of eigenvalues which is inside open disks of radius
p=1.005/A15| =81.555, p=1.005|15|=203.681 and p=1.005lA3%| =219.123 are 12, 32 and 36
which are exactly agree with the calculated values. As seen from this result. Therefore, we

verify that the proposed method can exactly check the number of eigenvalues inside some open

disk of arbitrary radius.
4. CONCLUSIONS

A technique of calculating the number of eigenvalues inside an open disk of arbitrary radius
was given. The technique is based on Chens algorithm and Gleyse's theorem and can be used to
check the missed eiegnvalues for the eigenproblem with damping matrix. By analyzing the
numerical examples, it is verified that the proposed method can exactly check the number of
eigenvalues for distinct or muitiple eigenvalues for damped systems.

The technique by Jung et al. should find the variation of arguments of complex numbers
along a predefined path. Therefore, a large number of checking points sholud be used to obtain
accurate result. However, the proposed method can exactly find the number of eigenvalues by
performing the factorization process only once. In result, much effort in finding the number of

eigenvalue of larger structures with damping matrix can be eliminated by the proposed method.
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