I. 기술강좌

2

LBS 상호운용성을 위한 플랫폼

(Open Location Services Platform: The Path to Interoperability for LBS)

2001. 11

Harry Niedzwiadek (CEO of Image Matters, LLC, USA)

Open GIS Consortium, Inc.

Harry Niedzwiadek
OpenLS Lead Architect, harryn@imagem.cc

© 2001, Open GIS Consortium, Inc.

The Vision for Open Location Services Platform

To deliver open interfaces that enable <u>interoperability</u> and further enable <u>actionable</u>, <u>multi-purpose</u>, <u>distributed</u>, <u>value-added</u> location application services and content to a wide variety of <u>service points</u>, wherever they might be, <u>on any device</u> (even if the service points are buried in applications or embedded devices).

OGC

© 2001, Open GIS Consortium, Inc.

Why Service Platforms With Standard Interfaces Are Needed

LBS Business Requirements

- Shorten Time to Market and Mitigate Risk
- Maintain application freshness, utility, variety of services and personal choice
- Enable Reliable 24x7x52 service, everywhere (24x7x365 is redundant)
- Provide Market Extensibility support multiple service growth paths with the same interface
- Build for performance while enabling acceptable costs and competitive prices with COTS and Internet services
 - High performance
 - Flexibility
 - Extensibility
 - Scalable
 - Secure and Privacy

OGC

© 2001, Open GIS Consortium, Inc

Purpose of the OpenLS-1 Initiative

- ~300 companies comprise the LBS business space world-wide
- · Market lacks an open service architecture
- Integration requirements across carrier properties and partners
 - No assurance offerings work together to form end-to-end solutions
- General recognition on the part of many in the value chain that standards are essential
- OpenLS applies OGC's rapid specification approach to address these challenges
 - Multi-year phased effort beginning with a single testbed focused on core location services
 - Companion market awareness program
 - Close coordination with other related industry standard fora

 \mathbf{OGC}

© 2001, Open GIS Consortium, Inc.

Project Objectives

- Build interfaces for the Core Services (foundational building blocks) for the Open Location Services Platform
 - Draft Implementation Specifications for Core Services, encodings and protocols
 - Variety of location-based content
- · Employ other industry standards where possible and practical
- Produce robust end-to-end location service solutions based upon Open Location Services Platform
 - Open Location Services Platform v 1.0
 - · Implementations of each Core Service
 - Several applications that employ the platform
- · Demonstrations in various 'strategic' locations
- OpenLS Web site (a node on OGCnetwork)

OGC

© 2001, Open GIS Consortium, Inc.

9

OpenLS-1 Sponsors

- ESRI with Sun Microsystems, SignalSoft and Syncline
- Hutchison 3G
- In-Q-Tel
- Oracle with Webraska
- Sun Microsystems with LocatioNet

OGC

© 2001, Open GIS Consortium, Inc.

OpenLS-1 Participants

- Cquay
- · Galdos with Hitachi
- Galdos with NTT Data
- BigTribe
- Intergraph with Compaq and Nav Tech
- ESRI
- IBM
- · University of Illinois
- LocatioNet
- Mapinfo
- Telecommunications Systems

- SignalSoft
- Sun Microsystems
- Syncline
- Navigation Technologies (NavTech)
- MobileGIS with Telcontar and Tele Atlas
- Optielway
- SICAD Geomatics (Siemens)
- Vodafone
- Webraska
- lonic
- · Laser-Scan with Yeoman Group
- · Tata Infotech

OGC

USA Canada Europe India Japan

© 2001, Open GIS Consortium, Inc.

11

OpenLS-1 Requirements Set the Initial Scope

- · User needs and preferences
 - Derived from market assessments made by sponsors and two iterations of consensus-based user needs assessment with sponsors
- Technology requirements and constraints
 - Derived from technology assessments made by sponsors and two iterations of consensus-based requirements engineering with sponsors
 - Initial set of Core Services were defined according to present state of technology and data
 - Sponsor platform defined according to operational needs and preferences
 - Alternative (participant) platforms allowed for the testbed

OGC

© 2001, Open GIS Consortium, Inc.

OpenLS-1 Working Groups

- Navigation Services WG
 - John Herring, Oracle
- · Directory (POI) Services WG
 - Vipul Sawhney, LocatioNet
- Presentation Services WG
 - Serge Margoulies, Ionic
- Location Utility Services WG
 - Jonathan Williams, Hutchison 3G
- Gateway Services WG
 - Richard Wong, SignalSoft
- Encodings & Protocols WG
 - Marwa Mabrouk, ESRI

OGC

© 2001, Open GIS Consortium, Inc.

15

Core Services by Work Groups

- · Navigation Services WG
 - Determine Route Service
 - Traffic Server (Get Traffic Service)
- · Directory (POI) Services WG
 - Proximity.directory Service
 - Pinpoint.directory Service
- Presentation Services WG
 - Web Map Service
 - Vector Map Portrayal Service
 - Display Route Vectors Service
 - "Display" Route Directions Service

- Location Utility Services WG
 - Geocoder Service
 - Reverse Geocoder Service
- Gateway Services WG
 - Get Device Location Service (subset of LIF 1.1)
- · Encodings & Protocols WG
 - XML for Location Services
 - Inter-process (HTTP Post)

Second Priority

OGC

© 2001, Open GIS Consortium, Inc.

© 2001, Open GIS Consortium, Inc.

Open GIS Consortium, Inc.

Harry Niedzwiadek
OpenLS Lead Architect, harryn@imagem.cc

© 2001, Open GIS Consortium, Inc.

Five Types of Interoperability Program Activities

- Feasibility Studies
 - Research efforts directed at understanding emerging technology areas
- Planning Studies
 - Strategic studies that assess opportunities to expand and sustain an organization's interoperability capacity
- Testbeds
 - Collaborative, applied research and development efforts to develop, architect and test candidate specifications addressing Sponsor requirements
- · Pilot Projects
 - Collaborative testing efforts that apply technology implementing OGC specifications to the real world
- · Insertion Projects
 - Collaborative projects focusing on expanding an organization's interoperability capacity by laying the infrastructure (groundwork) for open implementations

OGC

© 2001, Open GIS Consortium, Inc.

Genesis of Testbed-based OGC Interface

Pre-Testbed

Market need → Sponsor requirement →

Testbed

Sponsor/participant candidate interface \rightarrow Consensus-based pre-TIE draft implementation spec (perhaps several iterations) \rightarrow Consensus-based post-TIE draft implementation spec \rightarrow Consensus-based candidate implementation spec \rightarrow

Post-Testbed

Additional Testbed(s) \rightarrow Pilot(s) \rightarrow OGC Tech Committee (Location Services SIG) \rightarrow Other Standards Bodies

Note

- · May skip additional Testbeds and go directly to Pilots
- May skip additional Testbeds and Pilots and go directly to TC

OGC

© 2001, Open GIS Consortium, Inc.

Essential Parts of an OGC Interface Spec

- Informative
 - General Description
 - Use Case(s)
 - Dependencies
 - References
 - Examples
 - Key Terms and Concepts
- Normative
 - For Services
 - Request Parameters (Namespace & Schemas)
 - · Response Parameters (Namespace & Schemas)
 - · Exceptions (Namespace & Schemas)
 - · Implementation Protocols
 - For Content
 - Namespace
 - Schemas
 - · Implementation Protocols

@ 2001, Open GIS Consortium, Inc.

Tenets of OpenLS Interface Engineering

- · Market timing: Commercial solutions are desired for 2002.
- Interfaces MUST be well-grounded in technology and market realities
 - Based upon what current technology supports
 - Based upon what current data supports
 - Based upon realistic market needs and expectations
 - Simple (if not simple, then not commercially viable in 2002 timeframe)
 - Based upon compelling value-add propositions for subscribers that lead to increased revenues, reduced churn and/or reduced costs for operators
- Lay the foundation for future development (follow-up iterations)
 - Extensible
 - Based upon solid theoretical foundation
 - Minimal technical risk
- Size each iteration appropriately for the resources that are available

OGC

© 2001, Open GIS Consortium, Inc.

Steps to OpenLS-1 Interfaces

- · Conferred with sponsors to ascertain core services and their functional scope
- Collected API submissions from sponsors and participants
- APIs assessed by IP Team and mapped to core services
- Engineering Working Groups defined
- IP Team developed work packages containing:
 - One or more core services, encodings or protocols
 - Work plan template
 - For each service or encoding:
 - Description
 - · Basic use case
 - Additional use cases are optional
 - Starting point for request parameters
 - · Starting point for response parameters
- Working groups establish initial interface definitions and work plan during the kickoff
- Working groups refine interface specs through several iterations during the testbed; TIEs begin to test the interfaces
- Spec editors and their co-sponsors publish draft implementation specifications

Ø 2001, Open GIS Consortium, Inc.

27

We're Here

Nov 2001

Key Questions For Interface Engineering

- Requirements satisfaction
 - Does the proposed operation meet a stated requirement?
 - · If yes, the operation is a suitable candidate for the interface / If no defer
- · State of technology
 - Is the proposed operation supported by current technology?
 - · If yes, the operation is a suitable candidate for the interface / If no, defer
- · State of data
 - Is the proposed operation supported by current data?
 - · If yes, the operation is a suitable candidate for the interface / If no defer
- Level of complexity; Granularity
 - Does the proposed operation provide sufficient level of control to meet the requirements?
 - If yes, the operation is a suitable candidate for the interface / If no, enhance the interface
 - Is the proposed operation easy to implement?
 - If yes, the operation is a suitable candidate for the interface / If no, re-visit the granularity question

OGC

Ø 2001, Open GIS Consortium, Inc.

Key Questions For Interface Engineering (cont'd)

- · Loosely coupled versus tightly coupled
 - Does the proposed operation meet performance requirements?
 - · If yes, the approach is satisfactory.
 - · If no, change inter-process communication method.
- · On solid theoretical foundation
 - Is the proposed operation based upon solid theoretical foundation?
 - · If yes, this is likely an acceptable approach (low technical risk).
 - · If no, enhance the interface.
- Existing standards
 - Is the proposed interface consistent with existing standards?
 - · If yes, the interface is standards based.
 - · If no, consider revising the interface to be consistent with standards.
- Scope creep controls
 - Has scope gone out the window?
 - · If yes, stop and recalibrate.
 - · If no, good show!

OGC

© 2001, Open GIS Consortium, Inc.

2

Open GIS Consortium, Inc.

© 2001, Open GIS Consortium, Inc

Genesis of the OpenLS Architecture

- · Collected scope and requirements from prospective sponsors
- Prepared Request For Technology (RFT)
 - Defined the test bed approach
 - Defined a draft architecture
- Evaluated the RFT responses to refine the architecture
- · Held two sponsor meetings to determine final requirements
- · Prepared a second draft of the architecture
- Reviewed by sponsors and then released as Call For Participation (CFP)
- · Revised architecture based upon input from participants

OGC

© 2001, Open GIS Consortium, Inc.

31

Technology Context

OGC

© 2001, Open GIS Consortium, Inc.

Some Initial Choices for OpenLS-1

- · From pre-kickoff discussions
 - Use XML as encoding scheme for all interfaces
 - Use HTTP Post as binding mechanism for Open Location Services Platform v1.0
- Use existing specs as starting points for Core Services where possible
 - OpenLS encodings derived from OGC GML
 - LIF 1.1 for the Gateway
 - Filter Request (but Simple version)
 - OGC WMS
 - OGC Geocoder

OGC

© 2001, Open GIS Consortum, Inc.

OpenLS-1: Priority 1 Capabilities

- Location Service Clients Location-based client applications that run on mobile terminals.
- Application Services
 - Route Services
 - Determine Route Service Determine and optionally store routes for subscribers.
 - Display Route Vectors Service Displays routes on a mobile terminal.
 - Display Route Directions Service Displays turn-by-turn driving directions on a mobile terminal (optionally use voice commands).
 - Directory Services
 - Proximity.Directory Service Provides subscribers with access to an online directory to find the nearest place, product or service.
 - Pinpoint.Directory Service Provides subscribers with access to an online directory to find the location of a specific place, product or service.
 - Map Portrayal Services
 - · Web Map Service Displays raster rendering of map data on a mobile terminal.
 - Vector Map Portrayal Service Displays vector map data on a mobile terminal.

© 2001, Open GIS Cornortium, Inc.

3

OpenLS-1: Priority 1 Capabilities (cont'd)

- Application Services (Cont'd)
 - Geocoder Service Given a street address, or place name, determine position (coordinates).
 - Reverse Geocoder Service Given a position (coordinates), determine a street address, or place name.
- Data Services
 - Traffic Data Server
 - Get Traffic Service Fetches select traffic conditions for a subscriber, for a predetermined route or an area of interest.
- Gateway Services
 - Get Device Location Service Obtains position of a mobile terminal (based upon subset of LIF 1.1)
- OpenLS encodings Content
 - Consists of XML-based schema elements for representations of location content.

© 2001, Open GIS Consortium, Inc.

OpenLS-1: Priority 2 Capabilities

- · Server-side Client Applications
- Application Services
 - Map Interaction Service
 - Event Notification Services
 - · Poll Event Service
 - Broadcast Event Service
 - Tracking Services
 - Proximity.Tracking Service
 - Pinpoint.Tracking Service
 - SLD Service

OGC

- Geoparser Service
- In-transit Monitoring Services
 - Record Route Service
 - Get Route Status Service
 - · Re-Route Service
- Coverage Portraval Service

- Data Services
 - Directory (POI) Server
 - Gazetteer Server
 - Web Feature Server
 - Track Server
 - Route Data Server
 - Put Route Service Stores a predetermined route for a subscriber.
 - Get Route Service Fetches a predetermined route for a subscriber.
 - Web Coverage Server
- Portal Services
 - Registry Services
 - Content Transcoder Services
- Gateway Services
 - Get Track Service
- Content
 - XML for LS.raster
 - XML for LS.voice
 - MicroLOF

© 2001, Open GIS Consortium, Inc.

.

OGC Common Architecture: Integrating Across Testbeds

- A framework for unifying operational domains (OpenLS and OWS)
- · Aspects of Common Architecture
 - Service Model
 - · Model of service interactions and dependencies
 - · Typing framework for services, interfaces, operations, data
 - Registries
 - · Infrastructure mechanisms for discovery and access
 - Data Models and Encodings
 - · Common semantics and representation of data
 - Common Services
 - · Pervasive distributed computing infrastructure available for an operational domain
- Profiles
 - Implementation specifications and technologies for realizing the common architecture within a domain

OGC

© 2001, Open GIS Consortium, Inc.

Demonstration Plan

- OGC Sponsored Demonstrations
 - North America
 - During regular TC/PC meeting February 4-8 in New York City
 - Europe
 - · Time and location To Be Determined
 - OGC will oversee / monitor / validate non-proprietary demonstrations
- Member Sponsored Demonstrations
 - Each company authorized to plan their own according to needs
 - Time and location To Be Determined

OGC

© 2001, Open GIS Consortium, Inc.

Proposed Applications

- Personal Navigator, Traffic Service, Proximity Service (Webraska)
- Business Finder, Location Recall, Mobile Field Service, Driving Directions (Oracle)
- Proximity Movies Finder, Companies Finder, Corporate Asset Optimization (Opt[e]way)
- Concierge (MapInfo)
- · Routing & Portrayal (Laser-Scan/Yeoman)
- · Proximity and Routing (Intergraph)
- Vector Map Portrayal & Interaction (Cquay)
- Friend Finder (BigTribe)
- Route Display & Guidance (NavTech)
- · Voice-Graphics (Galdos & Hitachi)
- TBD (ESRI/Sun/Syncline/SignalSoft)
- TBD (Galdos/NTT Data)
- · TBD (IBM/ESRI)
- TBD (SICAD Siemens)
- TBD (Ionic)

OGC

© 2001, Open GIS Consortium, Inc.

Proposed Data

- Route Data
 - Europe NavTech, Opt(e)way, Webraska
 - North America NavTech, ESRI, Opt(e)way, Webraska
 - Japan Hitachi
- Directory Data
 - Europe Webraska
 - North America Cquay, ESRI, NavTech, Webraska
 - Japan Hitachi

OGC

© 2001, Open GIS Consortium, Inc.

© 2001, Open GIS Consortium, Inc.

Backup Slides Open GIS Consortium, Inc.

© 2001, Open GIS Consortium, inc.

Spec Engineering WG Activities

- Review Work Package
- Discuss and refine WG scope (focus on Core Services)
- · Discuss and define key terms and concepts
- Define/refine requirements
- Define Work Plan (See Work Plan Template), with Work Items:
 - #1 Define Core Services
 - #2 Research
 - #3 Specification Development
 - #4 Service Builds
 - #5 TIEs
 - #6 Demo Planning
 - #7 Risk Planning
- Define Core Services; Begin Specification Development (See Interface Engineering Guidelines and Work Group Sub-packages which contain starting points)

© 2001, Open GIS Consurtium, Inc

.

Navigation WG

- Determine Route Service
 - Participants: ESRI, IntelliWhere, IBM, Ionic, Laser-Scan, MapInfo, NavTech, Opt(e)way, Oracle, SICAD (Siemens), Webraska
- Traffic Server; Get Traffic Service
 - Participants: NavTech, Opt(e)way, Oracle, Webraska

OGC

© 2001, Open GIS Comortium, Inc.

Directory Services WG

- Proximity.Directory Service
 - Participants: Cquay, IntelliWhere, IBM, LocatioNet, MapInfo, NavTech, Opt(e)way, SICAD, Webraska
- Pinpoint.Directory Service
 - Participants: Cquay, LocatioNet, NavTech, Opt(e)way, SICAD, Webraska

OGC

© 2001, Open GIS Consortium, Inc

53

Presentation Services WG

- · Web Map Service
 - Participants: BigTribe, Cquay, ESRI, Galdos, IBM, Ionic, Laser-Scan, MapInfo, NavTech, Opt(e)way, Oracle, SICAD, Webraska
- Vector Map Portrayal Service
 - Participants: Cquay, Galdos, Intelliwhere, Laser-scan
- Display Route Vectors Service
 - Participants: BigTribe, ESRI, Intelliwhere, IBM, Laser-Scan, MapInfo, NavTech, Opt(e)way, Oracle, Webraska
- "Display" Route Directions Service, with Text and/or Voice
 - Participants: Laser-Scan, Opt(e)way, Oracle, Webraska

OGC

© 2001, Open GIS Consortium, Inc.

Location Utility Services WG

- Geocoder Service
 - Participants: Cquay, ESRI, Intelliwhere, IBM, Ionic, MapInfo, NavTech, Opt(e)way, Oracle, SICAD
- Reverse Geocoder Service
 - Participants: Cquay, ESRI, Intelliwhere, Ionic, MapInfo, NavTech, Opt(e)way, SICAD
- Simple Filter Request
 - Participants: ESRI, Intelliwhere, Ionic, Laser-Scan

OGC

© 2001, Open GIS Consortium, Inc.

66

Gateway Services WG

- Get Device Location Service subset LIF 1.1
 - Participants: Signalsoft, LocatioNet, TeleCommunication Systems (TCS), KDDI
- JAIN Services
 - Participants: Sun

OGC

© 2001, Open GIS Consortium, Inc.

Engineering Approach: Gateway Services

- Produce requirements document for the gateway (for at least the Get Device Location Service) ... this is the guiding document for the decision process related to the gateway.
- LIF 1.1 is "a common starting point" for this effort. Get consensus draft of this document to LIF.
- One or more simulators will be implemented in accordance with the consensus-based interface.
- Implement JAIN SPA Mobility API (TBD)
- Proposed Gateway Simulators
 - SignalSoft
 - LocatioNet
 - TCS
- OGC

© 2001, Open GIS Consortium, Inc.

5

Encodings & Protocols WG

- XML for Location Services
 - ESRI, Galdos, Ionic, Laser-Scan, MapInfo, Opt[e]way, Oracle, Webraska
- Inter-process mechanisms (HTTP Post)

 \mathbf{OGC}

© 2001, Open GIS Consortium, Inc.

Engineering Approach: XML for Location Services

- Sponsors produced requirements document for encodings... this is the guiding document for the decision process related to the how location information will be encoded for the Open Location Services Platform
 - Sponsors considered lessons learned from GML. G-XML, Mobil SVG, etc
- Sponsors developed draft UML models and schemas that reflect:
 - Requirements and their understanding of the market and technology
 - Insight gained from participant API submissions
 - Scope reflected by OpenLS-1 Core Services
- Refine the requirements document throughout the project
- Build OpenLS ADTs in the Work Groups

OGC

© 2001, Open GIS Consortium, Inc.