I. 기술강좌

1

Web 기반 엔코딩 언어 GML

(GML - Enabling the Geo-spatial World Wide Web)

2001. 11

Ronald Lake
(President, Galdos Systems Inc. Canada)

Geography Markup Language

Enabling the Geo-spatial World Wide Web

Copyright Galdos Systems Inc. November 2001

Who is Galdos?

- Famous Spanish writer of the 19th century!
- Creator of Geography Markup Language (GML).
- Custom Software Developer for XML applications for geo-spatial systems.
- Developing advanced geo-spatial server and client products for GML solution deployment.
- ▼ Training & Consulting for GML (XML for Spatial!)
- Founded in 1998. 15 Employees.

Copyright Galdos Systems Inc. November 2001

What is the Geo-spatial Web?

What made the web work?

Linking & Web Content

Made it work!!

Copyright Galdos Systems Inc. November 2001

Nov. 2001

9 galdos

Geo-spatial Web

What made the web work?

Hypertext acts as an organizing mechanism - build information incrementally

Copyright Galdos Systems Inc. November 2001

Geo-spatial Web

Geography Markup Language enables the Geo-spatial Web

Copyright Galdos Systems Inc. November 2001

Nov. 2001

Geography Markup Language

- XML encoding of geography
- Enables one to leverage the whole world of XML technologies.
- 9 Provides for vector mapping in a standard browser.
- 9 Enables complex features & feature associations

Will revolutionize the geo-spatial industry!

Copyright Galdos Systems Inc. November 2001

GML - Builds on W3C Standards

Tointer

RDF/S

Copyright Galdos Systems Inc. November 2001

Once Over Lightly – Why XML?

- 9 Self documenting. People can read and understand the data.
- The Standard tools can be used no need to create custom tools to read/display data.
- The Standard tools ensure data integrity.
- © Can leverage a whole world of XML technologies and tools!
- Teasy to integrate different kinds of data.

Copyright Galdos Systems Inc. November 2001

Nov. 2001

G galdos

Once Over Lightly – Why XML?

Can leverage a whole world of XML technologies and tools

- Parsing/navigating XML data
- Selecting XML data elements/subsets.
- Ouerving XML data
- Transforming XML data
- ¶ Linking to XML datasets
- Teating dataset associations
- 9 Data visualization
- T Specification of web services
- Network operations

Once your data is in XML you can use standard tools to do all sorts of common tasks!!

Copyright Galdos Systems Inc. November 2001

GML: What is it?

- GOGC Endorsed "Adopted Specification" (GML 2.0 passed March 2001) for encoding spatial information.
- A set of XML technologies for handling spatial data on the Internet.
- Emerging international standard for spatial data—endorsed by 200 + companies and agencies around the world.
- Will converge with G-XML (Japan) additional 600 companies. Target is GML 3.0 by December 2001

Copyright Galdos Systems Inc. November 2001

Nov. 2001

Why GML?

- 9 A "lingua franca" for geographic information.
- GML data can be read and understood by people.
- 9 GML can enable distributed spatial datasets that are linked together local maintenance & development /global access. Reduced cost for data.
- GML data can easily be mixed with non-spatial data including text, video, and imagery. (e.g. work order)
- GML can build shareable application schemas for telecommunications, utilities, forestry, tourism, and location-based services.

Nov. 2001

Copyright Galdos Systems Inc. November 2001

Why GML?

- GML is easily transformed coordinate conversion etc.
- Services can be created with specific types and then easily discovered. Services that act on features. Services that return routes or tracks. GML provides a STANDARD means to define input & output arguments.
- GML is non-proprietary and open! Any client can talk to any server!
- GML enables non-proprietary web feature servers, image/map annotation, map styling and spatial analysis.

Copyright Galdos Systems Inc. November 2001

Nov. 2001

History

- 1998 Kurt Buehler. defines a XML DTD for spatial.
- Feb 99 White paper by Galdos on XML for spatial.
- Feb 99 − Presentation by NTT Data
- Summer 99 Xbed Group led by Galdos Systems, develops SFXML (Oracle, NTT Data, MapInfo)
- 9 October 99 Galdos Systems writes GML RFC
- **9 Dec 99 − GML RFC becomes public**
- May 2000 GML 1.0 Passed as recommendation paper.
- Feb 2001 OGC publishes GML 2.0
- March 2001 GML 2.0 voted as "adopted specification"
- July 2001 GML 3.0 Workshop in Vancouver
- Sept 2001 OGC votes to send GML to ISO

Copyright Galdos Systems Inc. November 2001

GML Focuses on Content

Vector Maps display in a standard browser web page! (SVG)

GML Separates Content & Presentation!

Copyright Galdos Systems Inc. November 2001

Nov. 2001

G galdos

GML Mapping Examples

Same spatial data - many different styles!

Copyright Galdos Systems Inc. November 2001

Key Applications

- 9 Location-Based Services and Mobile GIS
- Internet GIS (local/regional & national governments)
- 9 Disaster Management
- 9 Accident Investigation
- Telecommunication Planning, Monitoring
- Tutility Planning & Coordination

Copyright Galdos Systems Inc. November 2001

Implications of GML

Copyright Galdos Systems Inc. November 2001

Nov. 2001

Implications of GML

- Makes it possible to build a spatial infrastructure reduces the incremental cost of building application specific data sets.
- Makes it easier to integrate spatial information with non-spatial information "e-mail me a map I can interact with"! => Better utilization of spatial information.
- Leads to geographic standards in vertical market domains standard shareable vocabularies lowers cost of data sharing and increases interoperability.
- Provides a flexible, open, standard transport for geographic information for location-based applications. Allows vendors to focus on content!

Copyright Galdos Systems Inc. November 2001

GML Deployment

Copyright Galdos Systems Inc. November 2001

Nov. 2001

GML Deployment

Development of Application Schemas for Application Area

What existing data can I link to?

What data should I convert to GML?

What application-specific data do I create?

Build applications

Deploy Applications and new data

Copyright Galdos Systems Inc. November 2001

Performance Issues

- GML 2.0 is text! Without compression data volumes can be significant.
- Example: Vancouver (City Center) has 2186 features and takes 0.573 megabytes. (270 bytes/feature) (54 bytes zipped)
- Example: Vancouver (Greater City) has 76000 features and takes 25 megabytes. (340 bytes/feature) (68 bytes zipped)
- Example: Lutheran County, Pennsylvania, USA, has 4800 features and takes 3.9 megabytes (830 bytes/feature) (166 bytes zipped)
- Good news: The data is very compressible. Experiments with GZIP have provided compression factors of 5-7:1; XML-specific compression (e.g. XMil) can improve on this by a factor of 2 more.

Copyright Galdos Systems Inc. November 2001

Nov. 2001

9 galdos

Constructing GML Application Schemas

- GML Application Schemas are necessary.
- GML Application Schemas apply to an Enterprise or an Industry.
- Tools are being developed for UML -> GML Application Schema.
- GML Application Schemas provide the shared vocabulary for telecoms:

Copyright Galdos Systems Inc. November 2001

9 galdos

Data Conversion

- Data Conversion Tools are emerging.
- Web Feature Servers provide GML Data (no conversion)
- Schema sharing reduces conversion task
- Data sharing reduces conversion task

Copyright Galdos Systems Inc. November 2001

What's coming in GML?

- GML 3.0 Anticipated for December 2001
- Converge with G-XML (Japan)
- Many new features including:
 - » Topology
 - » 3D and non-linear geometries
 - » Coverages
 - » Temporal support
 - » Metadata support
 - » Units of Measure
 - » Default Styling
 - » Points of Interest

Copyright Galdos Systems Inc. November 2001

Nov. 2001

galdos

GML 3.0

Disaster Management

AM/FM

Applications !

- TLocation:
 - Geometric point (like GML 2.0) but other geometries as well.
 - Postal address with internationalization support. (FGDC compliant)
 - String address. ("corner of 5th and Hornby")
 - Keyword (from a dictionary e.g. "Holland")

Temporal: (based on ISO 19108)

- Feature timestamps (time intervals, time positions)
- Dynamic Features
- Moving Object States

Vehicle Tracking

Location-Based Service Applications!

Customer Relationship Management

Copyright Galdos Systems Inc. November 2001

GML 3.0

- Topology: (based on ISO 19107)
 - Separate topology from geometry.
 - Primitives for nodes, edges, faces and solids.
 - Handles orientation.
- Geometry Enhancements:
 - Non-linear geometries smaller data size.
 - Curves bound polygons.
 - Polyhedral and other complex surfaces.

Traffic Management

Utility Network

Modeling, Planning &

Monitoring

AM/FM

Location-Based

Service

Applications!

Customer Relationship Management

Nov. 2001

9 galdos

Copyright Galdos Systems Inc. November 2001

GML 3.0

- Points/Areas of Interest:
 - Focused on location rather than type.
 - Have simple activity or item of interest..
 - May have attached observations.
- 9 Observations:
 - Images/multi-media content..
 - Position and time dependent..
- 9 ViewPoints:
 - Kind of Point of Interest (direction dependent)
 - Attach observations.

Copyright Galdos Systems Inc. November 2001

GML 3.0

Utility Network

Modeling, Planning &

Monitoring

- 9 Coverages: (based on ISO 19123).
 - Distribution of quantities over surface of the earth.
 - Remotely sensed images demographics customer d
 - Network model signal strength etc.

Location-Based Service Applications!

- 9 Units of Measure:
 - Arbitrary physical quantities physical quantity dictionaries.
 - Consistent with coverages and features.

AM/FM

F Reference Systems:

- Reference System dictionaries.

Market Analysis

- User defined reference systems. Linear references...

Copyright Galdos Systems Inc. November 2001

Nov. 2001

GML 3.0

Network Modeling, Planning & Monitoring

- Metadata Mechanisms.
 - Generic metadata mechanism for features, coverages etc
 - Metadata schemas can be published and shared.
 - Metadata schemas/instances for specific domains (e.g.

Location-Based Service Applications!

- The Default Styling:
 - Persistent styles for features..
 - Animation.
 - Topology Styles..

AM/FM

Market Analysis

Copyright Galdos Systems Inc. November 2001