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Minimax Filter for Continuous-Time State Space Models

Wook Hyun Kwon, Soo Hee Han
School of Electrical Engineering & Computer Science. Seoul National University

Abstract - In this paper, a new robust deadbeat
minimax FIR filter (DMFF) is proposed for
continuous-time state space signal models. Linearity,
deadbeat property, FIR structure, and independence of
the initial state information will be required in
advance, in addition to a performance index of the
worst case gain between the disturbance and the
current estimation error. The proposed DMFF is
obtained by directly minimizing a performance index
with the deadbeat constraint. The proposed DMFF is
represented first in a standard FIR form and then in
an iterative form. The DMFF will be shown to be
used also for the IIR structure. It is shown that the
DMFF is similar in form to the existing receding
horizon unbiased FIR filter (RHUFF) with some noise
covariances. The former is a deterministic filter, while
the latter is a stochastic filter.

1. Introduction

Filters are designed for the identification of unknown,
information-bearing parameters or variables in a
physical or mathematical model from quantities that
can be measured. For the frequency domain based
filter design, linear phase filters are often preferred
because the original signal can be tracked without
distortion. In the time domain based filter design, FIR
filter can provide the exact estimation when there are
no noises. These filters can be called deadbeat FIR
filtkers which are often sensitive to uncertainties.
Among filters, some filters can be designed
considering a worst case. The majority of filters
considering a worst case are classified as minimax
filters for stochastic systems and H. filters for

deterministic systems. In this paper, a new deadbeat
FIR filter design for deterministic continuous-time
systems is suggested considering the worst case. It
will turn out that these filters are insensitive and
robust to disturbances. FIR filters often depend on
information at the initial time of the horizon.. The
suggested filter will be independent of the initial state
information.

2. Deadbeat Minimax FIR Filters

Consider a linear continuous-time state space model

with control input: (5)
(D) = Ax(d)+Bu(d+ Guld, )
WD = Co(D+Duw(d (6)
where w(f) is the disturbance GDT=0 and

DDT=I are satisfied to decouple the system
disturbance and the measurement disturbance.

The systems (5) and (6) will be represented on the
[t—T,1], called the

horizon. The current state x(#) is given by a solution

most recent time interval

of (5) as follows:

t

WD =e %0 + f eI Bu(Ddr
‘ )
t

+ f e OGuw(Ddr, t— T<o<t.

[

[t— T, £, the (finite
measurements and inputs can be expressed in terms

Therefore, on the horizon

of the state x(# at the current time ¢ as follows:

o) = Cx(o) + Duw(o)

— a0 _ [ ae-2
= Cle?™ "x(d fae Bu(t)dr ®

f;e A= CulDdrl + Dul o).

The output y(o) and the integral term including input
u(7) are assumed to be known. Hence, known and
unknown parts can be separated as

o)+ C f :e A9 Bl Ddr =
A e40= () — f ‘:e A9 CulD)dr] + Dul o).

Using known variables, the DMFF for the current
state x(#) can be expressed as a linear functional of
the finite measurements and inputs on the horizon
[t— T, £ as follows:
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)= f,t_ JH(t=0)[ ¥ + Cf A=y z‘)dz']do')
! Tt 9
= ft_ (= 0)y(o)do+ ft_ TL( t—0)u(0)do

where
L(t-o)= [ H(t-9Ce** ?Bde.  (10)

Note that H(t—o0) and L(f—0) are gain matrices
of a linear filter. It is noted that the filter defined in
(9) is an FIR structure without any a priori statistical

information on the horizon initial state x(¢{— 7). The
gain matrix H(t—o0) will be designed such that

%(#42) is an deadbeat estimation filter of the current

state x(#) as

x(#2)

7 H=olxo)+C [ " Buldrldo
= [ _H(— ol Ce® x(h
¢ [ ¥ Gu(dde+ ul0)ldo

If there are no disturbances,
-~ ¢ —_
340 = [ __H(t—0)Ce " "x(ido.

In order for x(4f)=x(#), the following constraint on

H(t— o) is required:

ft[_TH(t—o)CeA(""”da =7 ap
which will be called the deadbeat constraint. It is
noted that constraint (11) must hold regardless of the
information on the horizon initial state x{({— 7) on
the horizon [#— T,¢]. This constraint may be too

strict, but surprisingly, we were able to obtain the
solution.

The objective now is to obtain the best gain matrix
Hg(t—0), subject to the deadbeat constraint (11),
based on the following criterion:

Hy(t—0)=arg min gy MAX (. )=
( [x(t)—’?c(tit)]T[x(t)-— x(49] ), a2
J.[_ W (D Fw(n)dr

To solve the above state estimation problem with
deadbeat constraint, an optimization problem with
constraints will be introduced. It will be shown that
the constraints consist of an algebraic equation and a
differential equation.

Replacing y(6) with the right side of (8), we have
the estimate as follows:

o= [ H1=olCle®x()~ [ A" Bulrdr
~ [ e Gu(rdr)+ Duld)
+ C f:e A9 By(r)dr]do.

Using the deadbeat constraint (11) and rearranging
the terms, the error between the real current state

and the estimate can be expressed as

()= %) = f,t_TH(’""){C f:e"“"‘f’cw(z)dr
— Duko)}do 14
In solving for H(t—o), it will be convenient to
H(t—0) consisting of the
hI(t—0) for 1<i<n as

define row vector

hilt—o)
hi(t-o0)

H(t—0)=| h3(t—0) (15)
nI(t—0)

Then, the error of the ¢~th state x,(#) can now be

expressed in terms of the vector components of
H(¢—0) as follows:

{x(D— x{4D)}*
= [f,i T{ ftd_ 7 (t— D) Ce 9 Gdr— D)u(o)do) °.

By the Causchy-Schwartz inequality, the following
relation is obtained:

x(H— x4D})*
f ,rrw (Dw(Ddr
[ ;T{f:Th {(t— 0 Ce*™?Gdr— D} *do).

<

Thus, note that an equality is satisfied for some w(7)

which is linearly dependent on an error. So,

max {x (D— x(4D)*
w(-)#0 f ’ Tw (Duw(dr

= ([ [ hilt=0Ce"?Gdr—D) o).

Rearranging the terms, we obtain the somewhat
simplified form requiring only minimization as follows:

hi(tfn;’)ﬁf(o) fti TfiT(G)GG Tf (o)do
+ fri 2 T(t— o)k (t— 0)do
subjec to
@ =h"(t=0C— T (DA FT(h=e""
where

[
1—

floy= [ A ICTh (1= Ddr, Ft= D=0
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and e; is the 7 th unit vector such that
e;=[0,-+,0,1,0,,

the 7 th position. To solve the above optimization

017 with the nonzerc element in

problem, the key theorem is introduced.

theorem 1
To extremize the integral

I= f Rxy, x5,

with respect to the

L X1, X9, Ddt (16)

continuously  differentiable
functions x,x,,-- which achieve the prescribed

values =1£, and t=t,, and satisfy the given equation

Glx x5, x1, X9,°, =0, the following
differential equations must be satisfied
OF _d,_3F \_
ox ( —)=0 a7
where
F(xl,---, 951.,"'.[)=f(x1,'”, ’;l,"'-t)

+/i(t)G(x1,"-, il,"',t)

for function A(H) which is determined to extremize I,

To wuse the result of Theorem (1), define the
following notation:
Fo)=f (GG TF )+ h T (t—h (t~0)
+A[(F)—CTh(t—a)+ATf(a).
Applying the theorem (1), we need to calculate the
following value:

{% = 266D+ aitg ¥
a_f— = 140 (19)
F

T’Jh—i = 211,'(1“'0')—'6‘/1,‘(0). 20

From equation (17), we can obtain f,(0) in a

Hamultonian matrix form

L[ 449 —aT Lo (a2 ] 149
A;‘(U) ZGGT A /{[(0-) A (O')
From (20), & (t—o0) is of the form
h{t=0) = +Cifo)
- IC[O fleHo-t+D f(t—=1

At— T)]
Using f(t—T)=0 and e 7 "D defined by

X(o—t+D Y(o—t+ 1D
Zo—t+T) Wo—t+T17)

h {t—0) can be expressed as

H(a t+7) @D

hit=0)= + CWa—t+ DAL- .
Using the deadbeat condition
f,t ;oA ATt—DW (0~ t+ DCTCeA o= e T,
we have
Alt-D=e]l f

where the inverse exists as follows. By tedious

= Wi o—t+ DICTCe " dg] !

calculation using (21),
t
f, 5 Wio—t+ TICTCeA 4o

can be replaced by Y (7). If (A, C) is observable,
Y(T) is guaranteed to be nonsingular.

theorem 2
The DMFF for the observable system (5) and (6) can
be expressed as

p= [ _Hi-oxodet [ _L(—dulods
where H(¢{—o) and L(¢{—0) are as follows:

Ht=a)=[ [ WT(z=t+ DCTCeA" ] !
Wi(o—t+DCT
and

L(t—o)= f: TH(t—z')CeA(’_")de'

where W(r—t+ T) is given by (21).

It is surprising that there exists a closed form
solution even under the strong condition (11) and that
the gain H(-) is independent of the initial state

information.
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