BFB11 Characterization of structural and electrochemical properties of $LiMn_2O_4$ coated with $LiNi1-XCo_XO_2$ (X = 0.2 and 1) using Solution-based Chemical Process LiNi1-XCo_xO₂ (X = 0.2 and 1)이 표면 코팅된 LiMn₂O₄의 전기화학적 특성 및 구조적 특성에 관한 연구 > <u>박성철</u>, 강용묵, 김유민, 이재영 한국과학기술원 재료공학과 The surface coating of LiMn₂O₄ using a gel precursor of LiNi_{1-X}Co_XO₂ (X = 0.2 and 1) from a chemical process was attempted in order to enhance the cycle stability of LiMn₂O₄ at elevated temperature. When the surface of LiMn₂O₄ was coated with LiCoO₂ coating solution, the surface of LiMn₂O₄ was covered with fine particles. From XRD, EDAX, and TEM analyses, it was clarified that the fine particle on its surface was LiCoO₂-coated LiMn₂O₄ showed an excellent cycle stability at 65°C compared to pure LiMn₂O₄. While pure LiMn₂O₄ retained 70 % of the initial capacity after 100 cycles at the rate of 120 mAh/g at 65°C, LiCoO2-coated LiMn2O4 retained approximately 92 % of the initial capacity. The improvement of cycle stability at 65°C is attributed to the reduction of Mn dissolution resulting from the suppression of the electrolyte decomposition induced by the catalytic activity of LiMn₂O₄. In the case of LiNi_{0.8}Co_{0.2}O₂-coated LiMn₂O₄, its high temperature cycle performance was also as excellent as that of LiCoO2-coated Consequently, It is proposed that the surface encapsulation of $LiMn_2O_4$ with fine $LiNi_{1-x}Co_xO_2$ (X = 0.2 and 1) particles improve its cycling stability at high temperature.