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The multiresponse optimization problem is more complex than in the
single response case. The analysis of multiresponse data requires careful
consideration of the mutivariate nature of the data. The scatterplot matrix
and the parallel coordinate plot can be useful as exploratory graphical tools
for multiresponse optimization.

Introduction

Under single response model, we usually execute the steepest ascent method and
the canonical analysis/the ridge analysis as the formal analytic approaches to the first
and second-order model analysis, respectively. But, These methods may not work at
all for multivariate cases. The multiresponse optimization problem is more complex
than in the single response case. The analysis of multiresponse data requires careful
consideration of the mutivariate nature of the data. The main difficulty stem from the
fact that when response variables are under investigation simultaneously, The mean-
ing of optimum becomes unclear since there is no unique way to order multivariate
values of a mutiresponse fuction. Furthmore, optimal condition for one response may
be far from optimal or even physically impractical for the other responses. Many re-
searchers studied multiresponse optimization(See Myers and Carter(1973), Derringer
and Suich(1980), Khuri and Conlon(1981), Vining and Myers(1990), Del Castillo and
Montgomery(1993), Derringer(1994), Luner(1994), Lin and Tu(1995), Copeland and
Nelson(1996), Del Castillo(1996), Del Castillo, Montgomery, and McCarville(1996),
Vining(1998), and Kim and Lin(1998, 2000).). Recently, Box(1999), Myers(1999),
and Carlyle, Montgomery, and Runger(2000) mentioned the multiresponse problems.
In multiresponse optimization, it is important to describe the distribution of the
mean responses. Heuristically, we can consider superimposing contours of all re-
sponse variables. This procedure has its limitation in large systems involving several
input variables and several response variables though it is simple and straightforward.
Hence, we need the tools for describing the distribution of the mean responses in large
systems involving several input variables and several response variables. This article
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is concerned with using the scatterplot matrix and the parallel coordinate plot for
describing the distribution of the mean responses in large systems involving several
input variables and several response variables.

The scatterplot matrix and the parallel coordinate plot

The scatterplot is an ideal tool for examining and visualizing the relationships
between two variables. Scatterplots are especially useful when we are examining
the relationship between continuous variables using statistical techniques such as
correlation or regression. Another approach to graphing a set of variables is to look
at a matrix of all possible pairwise scatterplots of the variables. The scatterplot
matrix will produce such a plot. Each variable is plotted with every other variable.
Every combination is plotted twice so that each variable appears on both the X and
Y axis.

Two dimensional projection may convey the wrong intuition in scatterplot. Weg-
man(1990) mentioned this fact. Thus, it is desirable to have a simultaneous represen-
tation of all coordinates of data vector. We can have this representation through the
parallel coordinate plot. Its advantage over other types of statistical graphics is its
ability to display multidimensional data in one representation. The parallel coordinate
plot was originally proposed and implemented by Inselberg (1985). variations of the
device and various applications have been supposed by other statisticians (Gennings,
Dawson, Carter, and Myers(1990), Wegman(1990), Miller and Wegman(1991), Bate-
son and Curtiss(1996), Weber and Desai(1996), Jang and Yang(1996), Becker(1997),
Inselberg(1998), Teppola, Mujunen, Minkkinen, Puijola, and Pursiheimo(1998), Chou,
Lin, and Yeh(1999), Groller, Loffelmann, and Wegenkittl(1999), Andrienko and An-
drienko(2001), and Falkman(2001)). In the parallel coordinate plot, each observation
in a data set is represented as an connected series of line segments which intersect
vertical axes, each scaled to a different variable. The observation’s line passes through
each axis according to its value of the variable of that axis.

Exploratory graphical tools for multiresponse optimization

Let y1,9s, ..., yr be r response variables that depend upon k input variables, z1, z», ..
and zx. Suppose that the response variables can be represented by polynomial regres-
sion models in the values of k¥ input variables with a certain interest region R using a
design D. Let the ¢-th predicted response at a point x = (zy, 29, ..., Z) is 9;(x) and
the prediction variance of responses at x divided by the error variance is V' (x).

The analytical methods for multiresponse optimization - direct search methods,
mathematical optimization algorithms, desirability fuction approach etc. - give the
optimal solutions under multiresponse model, but these methods can not provide the
distribution of the mean responses as superimposing contours of all response variables
in case of k = 2 or 3. Therefore, we need the tools for describing the distribution
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of the mean responses in large systems involving several input variables and several
response variables before and /or after we perform the analytical optimization. At this
time, the scatterplot matrix and the parallel coordinate plot can be used as tools for
describing the distribution of the mean responses in large systems involving several
input variables and several response variables.

Before and/or after we perform the analytical optimization, we can use the scatter-
plot matrix as a exploratory graphical tool for describing the conditional distribution
of the mean responses, knowing the interrelationships among resposes, and seeking
the optimal solutions heuristically under multiresponse model as following procedure.

1. Get each predicted response fuction ;,¢ = 1,2, ..., 7.

2. Obtain the combinations (x1,zs, ..., Tk, 91, Y2, ---, Ir, V(X)) of input variables
and responses which satisfy desirable conditions on the responses using Monte-Carlo
simulation.

3. Draw the scatterplot matrix using the combinations obtained in Step 2.

4. Seek the optimal solutions heuristically using brushing in the scatterplot matrix.

Detailed explanation about Step 2 is as following;

(1) Choose the values of input variables x = (z1, z3, ..., x) using pseudo random
numer generator. :

(2) Calculate 41,9, ..., §y with respect to the the values of input variables which
we obtained in (1).

(3) Search if calculated values of response variables 91, 9o, ..., §» satisfy desirable
conditions on the responses. If satisfied, we obtain a combination (z1, Za, ..., Tk, U1, T2,
-y Ur, V(%)) of input variables and responses which satisfy desirable conditions on the
responses.

(4) Repeat (1) - (4) until we obtain the desired number of combinations.

Brushing technique in the scatterplot matrix was introduced by Becker and Cleve-
land(1987). The more we have the combinations in Step 2 of upper-mentioned pro-
cedure, the better we can get the optimal solutions.

Also, Before and/or after we perform the analytical optimization, we can use the
parallel coordinate plot as a exploratory graphical tool for describing the distribution
of the mean responses, knowing the interrelationships among resposes, and seeking the
optimal solutions heuristically under multiresponse model by using upper-mentioned
procedures similarly.

Conclusion

The scatterplot matrix and the parallel coordinate plot can be used as exploratory
graphical tools for describing the distribution of the mean responses in large systems
involving several input variables and several response variables.
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Before and/or after we perform the analytical optimization, we can use the scat-
terplot matrix and the parallel coordinate plot as exploratory graphical tools for de-
scribing the distribution of the mean responses, knowing the interrelationships among
resposes, and seeking the optimal solutions heuristically under multiresponse model.
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