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Abstract

We begin with a brief review of some important advances made in statistical theory over
the last decade. The choice of topics is decidedly influenced by personal interests. Based on
this review, we then propose some possible scenarios about the future of statistics.

1. Introduction

Before suggesting some possible scenarios for the future of statistics, we review some of
the major advances in the last decade of the twentieth century. This review forms the basis
for our predictions. There is no claim for comprehensiveness as that approach would likely
result in a book length manuscript. Instead, the selection of topics can be considered as
more of a personal view of the past ten years in statistics.

2. Advances in Large Sample Theory

The classical central limits theorems were established in the first half of the twentieth
century and they provided a method to study the large sample properties of estimators and
likelihood ratio statistics. Le Cam developed the theory of locally asymptotically normal
families, contiguity approaches to large sample theory, and the comparison of experiments
during the middle of the century. Most of the effort in the past decade concerns more
specialized advances.

For instance, Yeo and Johnson(2000, 2001) while studying the asymptotic properties of
inference procedures related to the new transformation

(z+1)*=1)/A for z > 0,A £0,

W\ z) = log(z + 1) forz >0,A=0,
Y —((~z+ 122 -1)/2-X) forz <0, #2,

' —log(—z + 1) forz <0,A=2.

developed a uniform strong laws of large numbers for U-statistics, U, (8), which depend upon
a parameter . Almost surely, the convergence is uniform in 8. Cho ital(2001) also give
obtain the first uniform strong law in a regression setting. Uniform convergence leads directly
to the conclusion that, the maximum of n~!( Log likelihood) converges to the maximum of
the limit thus establishing consistency.

Fu used the techniques of Markov chains to develop results for runs and patterns(for
example Fu (1996)).

Horvath and co-workers used the KMT almost sure representations of Brownian bridges
and Brownian motion to obtain numerous results including the asymptotic properties of
smoothed quantile processes(see Csorgo and Horvath (1993, 1995)).

In another direction, Deheuvels has established numerous functional limit theorems as
well as limiting results for kernel density estimators (see Deheuvels(2000) and Deheuvels, P.
and Einmahl, J. H. J. (2001)).
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Moving beyond the usual time series models, Roussas and co-workers developed methods
of nonparametric inference for stochastic processes that satisfy a—mixing or strong mixing
conditions. { see Roussas(1990) and Roussas, Tran, and Ioannides(1992). These extensions
to mixing processes are natural extensions of the earlier Roussas papers on Markov processes.

Inference for another kind of stochastic process, the associated processes, has also been
developed recently. Bagai and Rao(1991) and Roussas(1991) are the first papers to ad-
dress this issue and Roussas has remained a leader in this area of intensive activity ( c.f.
Roussas(2000)). A finite collection of random variables {X;,t € I} is said to be positively
associated if, for any real-valued coordinatewise increasing functions F'(-) and G(-) defined
on R

Cov (F(X¢,tel),G(X,,s€I)>0
provided E F?(X;,t € I) < 0 and E G?*(X,,s € B) < oo. If I is not finite, then the
non-negativity must hold for all finite dimensional subsets.

An especially important topic of current interest is statistical inference for random fields
which obey either a mixing or association dependence condition. Roussas(1994) studies
asymptotic normality under positively associated or negatively associated random fields.

In another direction, Koul(1992) developed a comprehensive approach to large sample
theory using weighted empirical processes. When Y,;, ¢ = 1, ...,n are independent with Y,,;
distributed as Fy;(-), the weighted empirical process depending on the fixed weights dy;,
i=1,...,n is given by

n
> dni I(Yni <)
=1
The weights need not be non-negative. In a regression setting, where Y,,; depends on the
values Tn; = (Tpi1,..-Tnip)' of p predictor variables, the weighted empirical process takes the
form '

n
Vi, ) =) nij IVu <y+alt) teRP,
i=1

for j = 1,...,p. A significant advantage of viewing regression and autoregressive models via,
certain weighted empirical processes is that it leads to important and more efficient inference
procedures. In particular, this approach proved very useful in advancing the development
of the asymptotic theory of robust inference procedures corresponding to non-smooth score
functions from linear models to nonlinear regression and autoregressive models, as well as the
theory of regression quantiles under linear AR(p) models.( see Koul and Ossiander (1994),
Koul and Saleh(1995) and Koul (1996)).

3. Advances in Nonparametric and Semi-paramefric Modeling

One useful variant of the-classical multivariate ¢ sample problem, called a quantile test,
was posed by Johnson, Sim, etal (199). In the two-sample setting, it concerns the comparison
of two treatments where one treatment can produce a few large readings in one or all
responses. For each variable, the statistic only counts the number of observations from the
first treatment that exceed the combined sample 90-th percentile. When comparing a control
area with a contaminated site, there may be a few samples with high heavy metal readings
from the contaminated site. The quantile test effectively detects this type of difference, a
mixture of two densities.
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Widespread attention has been given to developing efficient estimation procedures for
semi-parametric models such as

YVi=0Fz;+h(z)+¢

where the linear part is of interest and a smooth function h(-) models the effect of addition
variables z. See Bickel ital(1993) for details of the statistical theory. One major goal is to
determine whether the parametric part can be estimated with high efficiency in the presence
of the nonparametric term.
More generally, the full mean m(z) of Y can be modeled as h(x). The special additive
model takes the from
m(z) = hi(z1) + ha(z2) + - -+ + he(zy)

where the h;(-) are unspecified except that they belong to a smooth class of functions. This
leads to smoothing based on splines ( see Wahba ( 1990) ) and Wavelet techniques.

Another issue of importance is determining the structural dimension about Y that is
available in a p =variate vector of predictor variables X. Consider the model where a
possibly transformed response YV in obvious notation, satisfies the model

YN =m(B'z) + /v(B,z) e

where the mean M (-) and variance v(-) depend on the predictor variables in a linear fashion.
Cook(2001) defines dimension as the number of linear combinations needed to explain all
the information about Y that is available in a p—variate predictor vector X. The model
above has dimension 1 and the model

Y™ =m(Biz,Byz) + \/v(Biz,Bhz) €

has structural dimension 2. The idea is to select a few linear combinations and thereby
reduce the dimension, without loss of information. Models that have structural dimension
3 or smaller can represent the data graphically so that visual inspection is based on full
information. The theory uses ideas from sliced inverse regression due to Li(1991).

4. Advances in Linear, Log-linear and Generalized Linear Models
and Inference

The multivariate general linear model
Y =XgB+e

where € is distributed as a normal distribution with mean 0 and covariance X is well under-
stood.

In spatial applications, the response Y (u), the predictor variables x(u), and the errors
€(u) all depend on the location u. Even in the single response case, the covariance matrix
V (8) for the response has entries cov(y(u;}, y(ux)). Some progress has been made on creating
V(0) with useful structure and developing inference procedures but much more remains to
be done.

Slightly more general are the hierarchical models. A vector Y of observations depends
on an unobserved random effects vector U. The joint distribution is assumed to be of
a parametric form that depends on the unknown parameters 8 = (6;,03). Further, the
conditional distribution of the observable vector Y, given the unobservable random vector
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u has the density, or probability mass function, f(y|u;6:1). At the next level of hierarchy,
we specify a parametric density g{u;82) for U.

Starting with independent random variables (Y;,U;), i = 1,2, ...,n, where (Y;,U;) is
distributed as f;(y;|u; 81) and U is distributed as g;(u;; @2). That is, both the conditional
and marginal distributions can depend on i. Then, the likelihood is given by

LBy, -un) = [] / filyslui; 01)gi(ui; 02)d u;

i=1
Under the related Bayesian approach, a prior density # (@) is assumed for the parameters.
Then, the posterior density
77(0 | y)l, ceey yn) X W(O)L(e, Y159 yn)

=ﬂ®II/ﬁWMMMMmﬂww
=1

Some rather complicated models have been fit using Markov chain Monte Carlo methods.
These models are quite general and interesting applications have been given (see Gilfand
ital (1990)).

5. Advances in the Markov Chain Monte Carlo Methods

The 1990’s witnessed a revolutionary approach to model fitting and the complexity of
models that can be posited. Although Markov chain Monte Carlo(MCMC) methods have
existed for over 50 years, use of these methods has exploded in the last decade. The book
by Robert and Casella(1999) gives many details and applications. In the context of a
Bayesian setting, the key idea of the MCMC approach is to generate a sequence of random
vectors 8 = (0§t) ,...,0&'5)). The sequence of #® should follow a Markov chain model
that is irreducible, ergodic, and stationary where the stationary distribution, p(-), is the
distribution of interest. Then, by the ergodic theorem,

im 13 h89) = [ h@) p(6)ds
dm 3 ©9) = [ 1©) 6)

for any integrable h(-). That is, the integral can be approximated by an average just as in
the case of independent samples.

5.1 Gibbs Sampling

Gelfand and Smith(1990) sets the Gibbs sampler within the framework of Markov chain
Monte Carlo techniques in a manner that applies to estimation of very general statistical
models. '

The Gibbs sampler is particularly applicable to evaluating posterior distributions. It
applies to situations where the form of the density is known up to a multiplying constant.
That is, the joint density

9(6)

7= Towyio

where g(-) is known. All simulation approaches to investigating the form and properties of
the joint distribution, f(-), proceed by generating very large samples from the distribution.
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Then, any feature of the distribution will be well approximated by the corresponding feature
of the sample. Non-iterative methods of generating samples seem to suffer the curse of
dimensionality and do not work well for high dimensional joint densities.

The Gibbs sampler is an iterative method that divides the high dimensional problem
into lower dimensional sub-problems.

The Gibbs sampler proceeds as follows:

Partition @ into k blocks so 8 = (61,...,0,). At stage ¢, let 00 = (9?),...,0?)). We
then make a transition to ¢+ by sampling from appropriate conditional distributions.

draw 9§t+1) from f(01|0§t)...,05t))
draw  8*Y  from  £(6,] 69Y,...,6{...,00)

draw  0¢*D  from  £(8,| 67, ...,6))

This gives one complete update of the random vector by the Gibbs sampler. The distribu-
tions f(0;| 64,...,0;-1,0;41,...,0,) are called the complete, conditional distributions.

The key to the procedure is that replaces the sampling of a complete vector 8 by suc-
cessively sampling the lower dimensional blocks 8;.

Convergence of the algorithm remains an issue. It is best to get samples of 8 from
separate independently started iterations. The sample can then use standard procedures
for estimating the features of the joint density. Alternatively, some researches generate only
one long sequence of random vectors by iteration and, after a burn-in period, use, say, every
m—th term where m is large. There will be some dependence in this sample and it should
be checked by calculating the sample autocorrelation functions. Smith and Roberts(1993)
give some relatively simple sufficient conditions on g(-) so that Gibbs sampler converges.

There are some difficulties with the application of Gibbs sampling, and MCMC methods
in general. They have been applied to models that are far too complex for the amount of
data available and with inadequate attention to convergence questions.

One software package( Speigelhalter, Thomas, Best and Gilks(1995)), called BUGS, is
quite general and quite widely used for teaching and research.

5.2 Perfect Simulation

One variation of an MCMC algorithm, called perfect simulation or exact sampling, pro-
vides in finite time actual independent draws from the stationary distribution of a Markov
chain. To date, it works best with finite state space Markov chains. The technique is based
on a backward coupling method due to Propp and Wilson (1996). When the goal is to
generate samples from fx(z), the distribution can be augmented by introducing a random
variable Y, taking only a finite number of values, and considering the joint distribution
f(z,y). The second variable should be chosen in such a way that both conditional distribu-
tions f(z] y) and f(y| z) are easy to sample. A two step Gibbs sampler induces a Markov
chainon Y .

Because Y has a finite state space, in some cases the Propp and Wilson coupling method
can be used to obtain independent and identically distributed observations from fy (y). For
each Y = y generated, an X can be selected from f(z | y). Meng(2000) gives an extension
of the algorithm to multistage backward coupling.
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6. Where Are We Going?

The history of recent major advances suggests some pessimism. Statisticians were not
the developers of some of the novel computational algorithms. The Gibbs sampler was
developed primarily by physicists and applied mathematicians trying to model complex
physical, chemical, or biological systems. Computer intensive inference procedures have
become a primary research area. Although statisticians have a better understanding of
uncertainty and errors, they may lack access to the fastest computers common to computer
science departments.

We suggest three possible scenarios for the future of statistics. The most pessimistic
scenario is given first.

Scenario 1. The preponderance of research will permanently shift to intensive computer
based modeling and inference. The line between statistics and a sub-field of computer science
becomes even more blurred. Many departments of statistic will vanish and be replaced by
small groups within computer science. If electrical and computer engineering is in the same
unit, advances may even be made when hot new algorithms can be immediately converted to
“hard wired” circuits consisting of a specialized chip or even a biological circuit. The point
being that these other subject areas may have the competitive advantage with computing
hardware of the latest type.

Scenario 2. Things continue as they currently are for a few decades. The new statistical
theory being developed is becoming very specialized. Faster computers allow for enough
replicates that error bounds can be added to cases where only point estimators are currently
available because of the complexity of the biological or physical system under investigation.
Advances in statistics will take place in the important applications areas of health, com-
putational biology, and genetics. Statisticians become even more valuable as members of
collaborative research teams attacking major problems in the sciences. However, it may
be difficult to maintain an active intellectual stimulation until the end of the 21-st century
unless major breakthroughs in statistical theory continue to occur.

Scenario 3. In the 21-st century, statisticians will come closer to a unified theory of
inference. This unified theory is likely to have heavy Bayesian component and it will need
to include a decision theory component. Frequency based ideas will be necessary to evaluate
the properties of new procedures. Whether the major language remains frequentist or reverts
more to Bayesian with an element of likelihood theory may still not be decided. For the
Bayesian side, it is well known that optimal statistical procedures are Bayesian.

New techniques for asymptotic analysis will be developed that pertain to studying the
properties of complicated new statistical algorithms. Mathematical expansions should be
able to suggest some bounds or estimate of error in forecasts and parameter estimates.

With these new tools, statistics will remain a field of active research and experts in
statistics will help in most scientific investigations across all experimental applications.

Rather than make a choice between the three scenarios, as a statistician I prefer to put
a probability distribution on the probabilities of the scenarios. For instance, one subjective
prior distribution is a Dirichlet distribution with mean .2 for p;, .4 for p; and .3 for ps with
perhaps .1 for an entirely new Scenario.

A profession that trains experts to make decisions under substantial uncertainties and
to access the amount of uncertainty in parameter estimates and uncertainties in forecasts
will undoubtedly be viable at the end of the 21-st century. Statistics will continue to be a
fascinating subject and, with its endless opportunities it participate in collaborative research
across all fields of science, will continue to draw bright students.
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