Construction and Patterning of the biospecific affinity surfaces on gold using dendrimer

  • 홍미영 (한국과학기술원 생물과학과) ;
  • 윤현철 (한국과학기술원 생물과학과) ;
  • 김학성 (한국과학기술원 생물과학과)
  • Published : 2000.11.09

Abstract

We constructed a biospecific affinity surface using hyper-branched dendrimers on gold for biospecific recognition, and characterized the resulting surfaces by using confocal fluorescence microscopy. The dendrimer monolayer was firstly constructed on the mercaptoundecanoic acid SAM/Au with pentafluorophenyl ester activation and further functionalized with sulfo-NHS-biotin, an activated ester of biotin. To confirm the formation of biospecific affinity surface, FITC(fluorescein isothiocyanate)-labeled avidin was loaded onto the biotinylated dendrimer monolayer, and fluorescence images of the bound avidins were investigated with a confocal microscope. The constructed biospecific affinity surface showed a much more dense and uniform fluorescence compared to those from poly-L-lysine- and cystamine SAM-based affinity surfaces. For the dependency on the concentration of added FITC-labeled avidin on the affinity surface, derived fluorescence could be detectable from as low as $1{\mu}g/ml$, and intensified up to $50{\mu}g/ml$. Further reaction of FITC-labeled avidin layer with TMR(tetramethylrhodamine)-biocytins resulted in the efficient FRET(fluorescence resonance energy transfer) phenomenon. As an extension of the study, we attempted a patterning of the affinity surfaces on gold by microcontact printing. Fluorescence of the patterned surface demonstrated that FITC-labeled avidin molecules were specifically bound to the biotinylated patches.

Keywords