〈10-5〉

Relaxation and leakage current characteristics of $Pb_{1-x}La_x(Zr_yTi_{1-y})_{1-x/4}$ O₃ (PLZT) thin films with various Ir-based top electrodes

Soon-Gil Yoon^{1,2} and A. I. Kingon¹

- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
- ² Department of Materials Engineering, Chungnam National University, Daeduk Science Town, 305-764, Taejon, Korea

Seung-Hyun Kim

Inostek Inc., 356-1 Gasan-Dong, Keumcheon-Gu, Seoul, 153-023, Korea

The dielectric relaxation and leakage current characteristics were studied for PLZT capacitors with various iridium-based top electrodes. The dielectric relaxation current behavior of PLZT capacitors obeys the well-known Curievon Schweidler law independent of various Ir-based top electrodes including Pt and shows surprisingly little impact of various atmospheres such as Ar, O₂, and H₂. Electrical charge hopping, bulk effect, is the dominant mechanism of a.c. electric conduction which exhibits a linear relationship with frequency at room temperature.

The true leakage current was separated definitively from the dielectric relaxation contributions. The PLZT capacitors with Pt or IrO₂ top electrodes contacted with PLZT films show strong time dependence of true leakage current, resulting in consistence with space-charge influenced injection model. On the other hand, true leakage current of capacitors with Ir or IrO₂/Ir top electrodes is independent of time, resulting in contradiction to the space-charge injection model. The IrPb, conducting phase, at interface between Ir top electrode and PLZT induces a steady state current behavior without the contribution of relaxation current. The second phase formed at interface modified the Schottky barrier height and increases the leakage current density.