(6-12) Effect of ZrO₂ on the Microstructure and Microwave Dielectric Properties of Ba(Zn_{1/3}Ta_{2/3})O₃ Jung-In Yang, Hwack-Joo Lee**, Hyun-Min Park**, Chang-Hack Choi*, and Sahn Nahm Department of Materials Science and Engineering, Korea University ** New Materials Evaluation Center, Korea Research Institute of Standards and Science * Advanced Materials Technology Effect of ZrO_2 on the structure and the microwave dielectric properties of $Ba(Zn_{1/3}Ta_{2/3})O_3(BZT)$ ceramics was investigated. The 1:2 ordered hexagonal structure disappeared with the addition of ZrO_2 . The average grain size of BZT was about 1 μ m and it increased when a large amount of ZrO_2 was added. The relative density increased with the addition of ZrO_2 but it decreased when ZrO_2 content was raised. The dielectric constant(ε_r) increased when a small amount of ZrO_2 was added. The temperature coefficient of resonant frequency(τ_f) increased with the addition of the ZrO_2 . The $Q\times f$ value of BZT was about 73,000 and it significantly improved with the addition of ZrO_2 . The maximum $Q\times f$ value achieved in this investigation was about 130,000 for the BZT calcined at 1200°C and sintered at 1550°C for 10 h **<6-13>** 양이온을 첨가한 수소 이온 전도체 $Ba(Ce_{1-x}M_x)O_{3-\delta}$ 계 세라믹스의 미세구조와 전기적 특성 Microstructure and Electrical Properties of Acceptor doped $Ba(Ce_{1-x}M_x)O_{3-\delta}$ Proton Conductor 안중호, 김영정 선문대학교 재료금속공학과 폐롭스카이트 구조를 갖는 $BaCeO_3$ 는 높은 수소 이온 전도성으로 인하여 고체 전해질 연료전지(SOFC)의 전해질 재료, 수소 기체 분리용 막, 가스센서 등 다양한 응용이 기대되는 재료이다 일반적으로 $BaCeO_3$ 의 Ce^{4+} 자리에 희토류 양이온 Y^{3+} , Yb^{3+} 등을 치환하여 산소 빈자리 농도를 증가시킴으로써 높은 수소 이온 전도성을 얻는다고 알려져 있다 본 연구에서는 BaCeO₃에 Y³⁺, Yb³⁺외의 다른 양이온 Sm³⁺, Al³⁺등을 치환 및 과량으로 첨가한 후 소결하여, 양이온의 첨가가 미세구조와 전기전도도에 미치는 영향을 알아보았다. Ba(Ce_{1-x}M_x)O_{3-δ}의 소결은 1500 ℃ \sim 1600 ℃의 공기 분위기에서 수행하였으며, 얻어진 소결체는 첨가한 양이온에 따라 입자의 형상과 크기가 다양한 미세구조를 나타내었다 수소이온 전도성을 파악하기 위하여 공기 분위기와 수소 분위기에서 조성과온도(R T \leq T/℃ \leq 1000)의 함수로 직류 4단자법(D C 4 probe method)을 이용하여 측정하였다