(P67)

플라이 에쉬와 고로슬래그를 이용한 C₄A₃통 클링커의 제조 Preparation of Calcium Sulfoaluminate Clinker Using Fly Ash and Blast Furnace Slag 조 진상, 황 인수, 송 종택, 전 준영* 단국대학교 재료공학과, *현대시멘트

일반적인 시멘트 클링커는 1450℃정도의 고온에서 생성되며, 주요 화합물로써는 C₃S, C₂S, C₃A, C₄AF의 조성광물을 가지게 된다. 그러나 C₄A₃S 클링커는 소성온도가 보통 포틀랜드 시멘트에 비하여 100~200℃ 정도의 낮은 저온소성 고기능성 시멘트이다 또 한, Hauyne 광물인 C₄A₃S 클링커는 기본적인 화학조성이 CaO-Al₂O₃-SO₃계로써 사용 목적에 따라 속경성, 고강도성, 팽창성 등의 성능을 가질수 있다

본 실험에서는 C_4A_3 통 클링커 제조시 환경보호 및 자원의 재활용 측면에서 산업부산물을 이용하였으며, Al_2O_3 원으로 플라이 애쉬, 고로 수쇄 및 괴재 슬래그, SO_3 원으로 부산석고를 이용하였으며, CaO원으로는 천연석회석을 이용하였다 원료의 혼합비를 변화시켜서 C_4A_3 통 클링커를 합성하여 그 특성을 검토하였다.

(P68)

Pechini 공정에 의해 합성된 C_2 S에서 β 상의 안정화 효과와 수화특성 Stabilizing Effect and Hydration Kinetics of β -Phase in Dicalcium Silicate Synthesized by Pechini Process with or without Stabilizers

<u>김영민</u>, 홍성현 서울대학교 재료공학부

Reactive dicalcium silicate ($C_2S^*Ca_2S_1O_4$) has been synthesized by the Pechini process with or without stabilizers, and hydration kinetics studied. Some kinds of known stabilizers, such as Al_2O_3 , K_2O_3 , B_2O_3 , SO_3 , P_2O_5 , and Fe_2O_3 were used to synthesize C_2S and also the stabilizing effect of β -phase investigated. The specific surface area, ranging from 10 to $1m^2/g$, strongly depends on the calcination temperature and the kinds of stabilizers. Samples with a high surface area have a high water demand, a water/cement ratio~20 is required to produce formable pastes in some instances. Hydration kinetics are determined by XRD, $^{29}S_1$ MAS NMR spectroscopy, and DTA/TG. The hydration rate depends on the kinds of stabilizers and the amount of the addition. The silicate structure of the hydrated C_2S pastes is investigated using $^{29}S_1$ MAS NMR spectroscopy.