Materialized View Selection Algorithm using Clustering Technique in Data Warehouse

데이터 웨어하우스에서 클러스터링 기법을 이용한 실체화 뷰 선택 알고리즘

  • Published : 2000.04.14

Abstract

In order to acquire the precise and fast response for an analytical query, proper selection of the views to materialize in data warehouse is very crucial. In traditional algorithms, the whole relation is considered to be selected as materialized views. However, materializing the whole relation rather than a part of relation results in much worse performance in terms of time and space cost. Therefore, we present a new algorithm for selection of views to materialize using clustering method in order to improve the performance of data warehouse including this problem. In the presented algorithm, ASVMR(Algorithm for Selection of Views to Materialize using Reduced table), we first generate reduced tables in data warehouse using automatic clustering based on attribute-values density, then we consider the combination of reduced tables as materialized views instead of the combination of the original base relations. We also show the experimental results in which both time and space cost are approximately 1.8 times better than the conventional algorithms.

데이터 웨어하우스에서 실체화 할 뷰들을 알맞게 선택하는 것은 분석적인 질의에 대한 정확하고 신속한 응답을 얻기 위해서 대단히 중요한 문제이다. 기존의 알고리즘들에서는 릴레이션 전체가 실체화 뷰들로서 고려되었다. 그러나, 릴레이션의 부분 대신 전체를 실체화한다는 것은 시간과 공간 비용측면에서 좋지 못한 성능을 초래한다. 따라서, 우리는 이러한 문제를 해결함과 동시에 데이터 웨어하우스의 성능을 향상시키기 위해서 새로운 실체화 뷰 선택 알고리즘을 제안한다. 제안된 알고리즘 ASVMR(Algorithm for Selection of Views to Materialize using Reduced table)에서는 먼저 속성-값들의 농도에 기반을 둔 자동 클러스터링을 사용하여 축약 테이블들을 데이터 웨어하우스에서 생성하고, 그리고 원래의 베이스 릴레이션들의 조합 대신에 축약 테이블들의 조합을 실체화 뷰들로 고려한다. 실험결과에서 시간 및 공간 모두에서 기존 알고리즘들보다 약 1.8배의 성능향상이 있음을 알 수 있다.

Keywords