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Introduction

Type I and Il interferons are major lines of defense against viral infections. IFNs,
through activation of diverse antiviral pathways, block multiple steps of viral replication
including entry of the virus into the cell, transcription, translation, maturation, assembly, and
virion release. IFNs also augment immune recognition and lysis of virally infected cells through
upregulation of MHC class I and II protein expression, and through upregulation of antigen
processing machinery such as subunits of the proteasome. There is increasing evidence that IFN-
mediated anti-viral effects have led multiple viruses to evolve mechanisms of blocking IFN-
signaling in infected cells. Herein, we will review in greater detail the role of IFNs in antiviral
activity, the IFN signal transduction pathways, and new information regarding specific
mechanisms utilized by viruses to inhibit IFN signaling.
Antiviral mechanisms of IFN:

IFNs, through activation of diverse antiviral pathways, block multiple steps of viral
replication including entry of the virus into the cell, transcription, translation, maturation,
assembly, and virion release [1, 2]. Three main proteins mediate these IFN-induced direct
antiviral effects. (1) 2',5'-oligoadenylate synthetase (2',5'-OAS) interacts with double stranded
(ds)-RNA to activate a ribonuclease (RNAse L) which degrades mRNA, preventing viral
products from being synthesized [1, 2]. (2) dsRNA-dependent protein kinase (PKR) also inhibits
translation of viral products by phosphorylating translation initiation factor eIF-2 [1, 2]. (3) Mx
proteins disrupt influenza, VSV, and HSV replication, working through an unknown mechanism
[1,2].

In addition to inhibiting viral replication, IFNs augment immune recognition and lysis of
virally-infected cells [2]. Virally-infected cells are recognized by T cells via viral peptides
presented in the context of major histocompatibility complex (MHC) class I and II molecules.

Type I IFNs upregulate MHC class I protein expression, and type II IFNs upregulate both MHC
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class I and II [3, 4]. Moreover, IFNs upregulate other antigen processing machinery, such as
subunits of the proteasome [5].

To underscore the importance of IFNs in controlling viral infections, in vivo studies, with
a few exceptions, show that experimentally disrupting IFN action enhances viral disease. In
studies with neutralizing antibodies to IFN-o/p, mice infected with mouse hepatitis virus-3,
influenza, Sindbis, encephalomyocarditis (EMC) virus, murine cytomegalovirus (MCMYV), or
herpes simplex virus (HSV)-1 were more susceptible to viral infection and pathology than non-
IFN-o/B depleted controls [2]. In addition, symptomatic infections with Semliki Forest virus,
EMC, HSV-1 and -2, Moloney sarcoma, Friend leukemia virus, or polyoma virus in naturally
sensitive mice were exacerbated by IFN-a/f depletion. Similar results were generated in
experiments using IFN-o/[3 receptor knockout mice [2]. Analyses of the role of IFN-y in viral
infection have produced analogous results, demonstrating that IFN-y promotes recovery from and
clearance of lymphocytic choriomeningitis and vaccinia vimses [2].

Several studies demonstrate the importance of IFNs in controlling HCMV disease.
Intramuscular IFN-a reduces the replication of MCMYV in the spleen and liver of mice and IFN-a
receptor knockout mice are 800-fold more susceptible to MCMYV infection than their wild type
litter mates [6, 7]. Numerous in vitro studies demonstrate that pretreating cells with IFN-a
inhibits human HCMV replication by decreasing transcription of the immediate-early (IE)
HCMYV gene products [8, 9]. The antiviral effects of IFN also extend to clinical therapy, as IFN-
o treatment significantly reduces the incidence of serious HCMYV infections in seropositive renal
transplant recipients [10].

In addition to the type I interferons, studies of IFN-y in MCMV models demonstrate that
IFN-y is a critical cytokine in controlling acute and chronic CMV infection [7, 11]. In vivo it has
been documented that (1) IFN-y accounts for the majority of natural killer (NK) cell-mediated

antiviral effects during acute infection [12, 13]; (2) Neutralization of IFN-y prevents MCMV
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clearance from the salivary gland and prevents control of MCMYV infection [14, 15]; and (3) IFN-
v depletion increases MCMYV titers in the liver and spleen [13]. In vitro it has been documented
that (1) Pretreatment of diverse cell types with IFN-y inhibits HCMV replication [9, 16-19]; and
(2) IFN-y pretreatment restores HCMV antigen processing and presentation to HCMV specific
CD8" T lymphocyte clones [20, 21]. Recently, it has been reported that MCMYV infection in IFN-
y receptor knockout mice leads to an uncontrolled persistent infection resulting in a severe
vasculitis of large arterial vessels [7]. In contrast, there are very few studies demonstrating that
IFN-y positively influences CMV replication [22].

Furthermore, two animal models demonstrate that the IFN stimulated JAK/STAT signal
transduction pathway is critical for controlling CMV infections. STAT1 knockout mice and IFN-
a receptor/IFN-y receptor double knockout mice, which are deficient in IFN stimulated signal
transduction and biological responses, are exquisitely sensitive to viral infection [7, 23]. In these
mice, acute MCMYV infection proceeds unchecked and rapidly leads to death [7, 23].

IFN Signal Transduction:

The diverse biological activities of the IFNs are mediated by a conserved signal
transduction pathway [4]. IFN-a binds to its receptor (IFNAR1 and IFNAR2), which stimulates
the activation of kinases JAK1 and Tyk2 [24]. JAK1 and Tyk2 phosphorylate each other, the
cytoplasmic tail of IFNAR1, STAT1 and STAT2 (signal transducers and activator of
transcription). STAT1/STAT2 heterodimers unite with DNA-binding protein p48 to form the
transcription factor complex ISGF3, which binds to the IFN stimulated response element (ISRE)
sites in many IFN-a responsive promoters [4, 25-27]. Alternatively, phosphorylated STAT1
homodimers and STAT1/STAT?2 heterodimers can move to the nucleus and bind to elements such
as the inverted repeat (IR) element of the interferon regulatory factor-1 (IRF-1) gene to activate

transcription in an ISGF3-independent manner [28, 29].
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In the IFN-y signal transduction pathway, the receptor (IFN-yR1 and IFN-yR2) binds
IFN-y; associated JAK1 and JAK2 unite, triggering tyrosine phosphorylation [4, 30].
Phosphorylated STAT1a forms a homodimer called IFN-y activating factor (GAF) that binds to
the IFN-y activated sequence (GAS) elements in the promoters of IFN-y stimulated genes to
activate transcription [31, 32].

Viral disruption of IFN signaling:

Recent work demonstrates that viruses have evolved means of disrupting IFN stimulated
JAK/STAT signal transduction. Adenovirus E1A gene products inhibit IFN-a and IFN-y signal
transduction, thereby protecting E1A expressing cells from IFN stimulated antiviral and
immunoregulatory responses; and E1A enhances replication by distinct viruses in IFN-treated
adenovirus-infected cells [33-38].  Adenovirus E1A gene products decrease p48, and
overexpression of p48 can restore IFN-o signal transduction in E1A transfected cells [35]. In
addition, in some cell types (HeLa and 3Y1 rat fibroblasts but not HT1080 cells), E1A also
decreases STAT1 levels, further preventing IFN-o0 and IFN-y induced signaling {34, 35, 39].
However, the mechanisms which mediate these decreases are unknown.

The ability of human papilloma virus (HPV) to inhibit IFN signal transduction, has also
been recently investigated since IFN-a treatments of HPV-infected patients have yielded only
marginal clinical benefits [40]. The HPV E7 oncoprotein was a candidate for disrupting IFN
signaling since (1) HPV-transformed cells disrupted IFN-a stimulated responses, (2) patients
responding well to IFN-a treatment had lower levels of E7 oncoprotein, and (3) E7 shares
sequence and functional homology with the IFN-a-signal-transduction-blocking adenovirus E1A
protein [40]. Cells transfected with HPV E7 inhibited the induction of IFN-a inducible genes,
but not IFN-y inducible genes. Moreover, these cells lost ISGF3 formation and p48 nuclear

translocation, without decreasing p48 levels. The E7 protein could potentially play a direct role

in inactivating p48, since it binds p48 [40].
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Mumps disrupts IFN-induced gene expression in infected cells through inhibition of the
signaling pathway [41-44]. One recent study demonstrated that the lesion in the signaling
pathway was an absence of STAT1a, mediated by a post-transcriptional mechanism [44]. This
signaling defect prevented the antiviral effects of IFN against VSV superinfection [42].

Filoviruses, including the lethal Ebola virus, have proved resistant to IFN prophylaxis in
infected monkeys [45, 46]. Recently, Ebola virus was shown to inhibit the induction of IFN
induced genes including MHC class I, IRF-1, and 2',5'-OAS. Gel shift experiments demonstrated
that both IFN-a and IFN-y signal transduction was blocked in Ebola-infected endothelial cells
(EC); signaling complexes did not bind the ISRE, and only very low levels of GAS-binding
complexes were formed [46]. The precise site of inhibition has not been determined, but likely
candidates include JAK1, STATI, or STAT2. This disruption of IFN signaling could contribute
to the severe immunosuppression and high viral titers seen in Ebola infection.

The Hepatitis B virus (HBV) terminal protein was demonstrated to block the signaling
response to IFN-a and IFN-y by interfering with the formation of active ISGF3 complexes [47].
It is hypothesized that enough terminal protein may be generated in chronic HBV infections
which could make IFN-o therapy less effective and antagonize infected hepatocyte antigen
presentation to cytotoxic T lymphocytes.

The Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA-2) gene similarly prevents
activation of IFN stimulated genes by IFN-o, however, this inhibition appears to occur
downstream of the activation of ISGF3 [48]. Moreover, unlike other viruses which interfere with
IFN signaling, this inhibition of signaling prevents the antiproliferative effect of IFN-a, yet it
does not prevent the antiviral actions of IFN [49].

HCMYV employs many mechanisms enabling it to evade immunosurveillance and persist
in the host [50]. Inhibiting IFN-y and IFN-a signal transduction are some of those important

strategies. HCMYV is the first virus identified as inhibiting IFN-y stimulated JAK/STAT signal
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transduction by targeting JAK1. This lesion results in blocked IFN-y stimulated signal
transduction and gene expression including the induction of MHC class II, class I, and associated
antigen processing genes in EC and fibroblasts [51, 52]. HCMV immediate early (IE) and/or
early (E) genes decrease JAK1 expression through a post-translational mechanism involving the
proteasome [52].

JAK1 is an essential component of type I IFN signaling, suggesting that HCMV could
similarly inhibit IFN-o responsiveness by targeting JAK1. However, recent reports that a HCMV
virion protein is capable of upregulating a subset of IFN-a responsive genes, independent of IFN
treatment and signal transduction, cast doubt upon the ability of HCMV to block IFN-o

responsiveness [53, 54]. Our experiments determined, however, that IFN-a—induced ISGF3-

dependent signaling was blocked, since IFN-a treatment was unable to upregulate MHC class I,
2',5'-0OAS, or MxA RNA levels in HCMV infected cells [55]. Further, ISGF3- independent IFN-
o induced signaling was inhibited, since IRF-1 mRNA induction was blocked in CMV infected
cells [55]. Gel shift experiments revealed that both ISGF3 and STAT1 homodimer formation,
were inhibited [55]. These findings could be explained by the discoveries that JAK1 as well as
p48, an essential component of ISGF3, are both significantly decreased by HCMV [55]. Thus,
CMV induces lesions in multiple levels of the IFN-a JAK/STAT signal transduction pathway,
decreasing both JAK1 and p48. The ability for CMV to evade the type I and II IFN-stimulated
antiviral and immunoregulatory responses in EC probably contributes to EC "reservoirs" of
infectious virus.

It is increasing evident that multiple mechanisms for viral disruption of IFN signaling by
a virus, will be discovered. Recently, Le Roy et al. discovered a distinct mechanism for HCMV-
mediated disruption of IFN-y inducible MHC class II expression utilizing an in vitro model where
cells are infected with HCMV and treated with IFN-y simultaneously. Their studies show a

repression of CIITA mRNA expression as early as 6 hours after infection suggesting that a
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HCMYV protein or HCMV-induced signal inhibits IFN-y stimulated CIITA expression at the level
of the CIITA promoter [56].

In summary, recent findings suggest that the intense selection pressure of cell mediated
antiviral immune responses have led several viruses to evolve strategies for inhibiting IFN
signaling. Studies directed toward identification of viral proteins and mechanisms involved in
disrupting IFNs may lead to therapies which will thwart these responses and ameliorate the

complications associated with persistent stages of infection.
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