D13 Identification of RFLP Markers Associated with Ozone Resistance in Rice Jong-Joon Lee, Jae-Keun Sohn *. Department of Agronomy, Kyungpook National University, Taegu, 702-701 Korea ## **Objectives** The objectives of this study were to identify the QTLs markers associated with O₃ resistance and to provide useful information for improvement of O₃ resistance by marker-assisted selection(MAS) in rice. ## Materials and Methods - o. Plant materials - -. 28 rice cultivars and F₂ populations from 'Milyang 23/Chucheongbyeo' and 'Milyang 23/Daeribbyeo 1'. - o. Evaluation of O₃ resistance - -. 21-day-old seedlings were fumigated for 3 hrs at 0.3 ppm O₃ concentration. - o. Linkage map: NIAST map(Cho et al, 1998). - o. QTL analysis: QGENE(Nelson, 1997). ## Results and Discussion The F_1 plants from the crosses between a resistant cultivar 'Milyang 23' and susceptible cultivars, 'Chucheongbyeo' or 'Daeribbyeo 1', showed intermediate reactions to O_3 . The segregation mode for O_3 resistance in the F_2 populations of two crosses, 'Milyang 23/Chucheongbyeo' and 'Milyang 23/Daeribbyeo 1', revealed a nearly normal distribution with their mean values slightly toward the resistant side of the midparents value. The estimates of broad-sense heritability for O_3 resistance were 84.5% and 88.3% in the two crosses. Relationship between O_3 resistance and QTLs markers were analyzed in 28 rice cultivars and F_2 populations derived from 'Milyang 23/Chucheongbyeo' and 'Milyang 23/Daeribbyeo 1'. One of the markers, RG109, was revealed polymorphic and significantly distinguished resistance and susceptibility to O_3 of the F_2 populations derived from them(Table 1, 2, Fig. 1, 2). 연락처 전화: 053-950-5711, E-mail: jhsohn@bh.kyungpook.ac.kr Table 1. Relationship between O₃ resistance and RFLP markers in the F₂ population derived from a rice cross, 'Milyang 23/Daeribbyeo 1' | RFLP
markers | Ozone resistance(Mean ± SD) | | a) | |-----------------|-----------------------------|---------------------|------------------------| | | Milyang 23 allele | Daeribbyeo 1 allele | - t-value ^a | | RG 109 | 2.83 ± 1.34 | 6.08±3.01 | 3.42** | | C 507 | 4.40 ± 3.27 | 6.29 ± 2.51 | 1.40 | a) t-values for estimated leaf injury to O₃ associated with three RFLP markers. significant at 1% levels. Fig. 1. Autoradiography of southern hybridization of $Bgl \ \Pi$ digest of rice DNAs with radiolabelled probe RG109 in F_2 population derived from a cross, 'Milyang 23(P_1)/Chucheongbyeo(P_2)'. Phenotype: R=resistant, S=susceptible to O_3 . Genotype: $1 \sim 48 = F_2$ plants. Table 2. Relationship between O₃ resistance and RFLP markers in 28 rice cultivars | RFLP
markers | Ozone resistance(Mean ± SD) | | t-value ^{a)} | |-----------------|-----------------------------|-----------------|-----------------------| | | Milyang 23 type | Gihobyeo type | t-value | | RG 109 | 3.64±1.44 | 5.82 ± 1.98 | 3.16** | | C 507 | 3.82 ± 1.60 | 5.47 ± 2.03 | 2.59* | | RG 1094 | 3.67 ± 1.58 | 5.58±2.01 | 2.51 | a) t-values for estimated leaf injury to O₃ associated with three RFLP markers. ^{, :} significant at 5% and 1% levels, respectively. Fig. 2. Varietal difference of rice in response to O₃ of 28 rice cultivars. Autoradiography of southern hybridization of Bgl II, BamH I and EcoR I digest of rice DNAs with radiolabelled probes, RG109, C507, and RG1094, respectively. Phenotype: R=resistant, MR=moderate resistant, S=susceptible to O₃. ^{1.}Milyang23, 2.Gihobyeo, 3.Geumobyeo, 4.Nagdongbyeo, 5.Nonganbyeo, 6.Daeribbyeo 1, 7.Dongjinbyeo, 8.Donghaebyeo, 9.Sambaegbyeo, 10.Sangnambatbyeo, 11.Sangjubyeo, 12.Yeongnambyeo, 13.Ilmibyeo, 14.Ilpumbyeo, 15.Janganbyeo, 16.Jinmibyeo, 17.Chucheongbyeo, 18.Hwayeongbyeo, 19.Koshihikari, 20.Sasanishiki, 21.Gayabyeo, 22.Namcheonbyeo, 23.Dasanbyeo, 24.Milyang63, 25.Samgangbyeo, 26.Cheongcheongbyeo, 27.IR29, 28.IR36.