경북대학교: 이상순*, 이정동, 황영현

Effect of seeding date on the pod yield and optimum harvesting time of snap bean (*Phaseolus vulgaris* L.)

Kyungpook Nat'l Univ. : Sang-Soon Lee*, Jeong-Dong Lee, Young-Hyun Hwang

<u>Objective</u>

To find out optimum seeding date and harvesting time and to evaluate the change of pod components after flowering in snap bean

Materials and Methods

o Materials: determinate type- Gangnangkong 1, KLG50019

indeterminate type- KLG50026, KLG50027

o Planting date: 7 times from March 20 to June 18 with 15days intervals

o Planting density: 60cm x 15cm, one plant per hill

o Experimental design: Split plot design with two replications

-varieties in main plot and seeding date in sub-plot

Results and Discussion

- o Highest pod yield was obtained from March 20 for determinate type and April 4 for indeterminate type, respectively, with the range of 1.3~2.37 t/10a
- o Pod components and characteristics based on weight, length, and width of pods indicated the optimum harvesting time for immature pods was considered to be 15-20 days after flowering
- o Total vitamin C content of green pod showed continuously decreasing trends from five days after flowering

Corresponding Phone: 053-950-5712, E-mail: aiaie@hanmail.net

Table 1. Green pod yield of four snap bean varieties in different planting date.

Variety - N	Planting date (MT/10a)						
	March 20	April 4	April 19	May 4	May 19	June 3	June 18
Gangnangkong1	1.31 ^a	1.0 ^{bc}	1.17 ^{ab}	0.98 ^{bc}	0.78°	0.75°	0.35⁴
KLG50019	1.77 ^a	1.31 ^b	1.29 ^b	0.76 ^c	0.49 ^a	0.29 ^d	0.02 ^e
KLG50026	2.19 ^a	2.37 ^a	1.04 ^{bc}	1.26 ^b	0.66 ^{cd}	0.30 ^{de}	0.03 ^e
KLG50027	1.46 ^{bc}	2.18 ^a	0.50 ^{de}	2.07 ^{ab}	$1.14^{\rm cd}$	0.82 ^{cde}	0.19^{e}
LSD 5% between varietie	s 0.59	0.20	0.43	0.81	0.43	0.38	0.08

Means followed by same letter in a row are not significantly different at 0.05 by DMRT.

Figl. Change in content of total vitamin C and moisture of green pod after flowering.